Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells remodel after UV radiation

20.12.2013
Researchers map cell's complex genetic interactions to fix damaged DNA

Researchers at the University of California, San Diego School of Medicine, with colleagues in The Netherlands and United Kingdom, have produced the first map detailing the network of genetic interactions underlying the cellular response to ultraviolet (UV) radiation.

The researchers say their study establishes a new method and resource for exploring in greater detail how cells are damaged by UV radiation and how they repair themselves. UV damage is one route to malignancy, especially in skin cancer, and understanding the underlying repair pathways will better help scientists to understand what goes wrong in such cancers.

The findings will be published in the December 26, 2013 issue of Cell Reports.

Principal investigator Trey Ideker, PhD, division chief of genetics in the UC San Diego School of Medicine and a professor in the UC San Diego Departments of Medicine and Bioengineering, and colleagues mapped 89 UV-induced functional interactions among 62 protein complexes. The interactions were culled from a larger measurement of more than 45,000 double mutants, the deletion of two separate genes, before and after different doses of UV radiation.

Specifically, they identified interactive links to the cell's chromatin structure remodeling (RSC) complex, a grouping of protein subunits that remodel chromatin – the combination of DNA and proteins that make up a cell's nucleus – during cell mitosis or division. "We show that RSC is recruited to places on genes or DNA sequences where UV damage has occurred and that it helps facilitate efficient repair by promoting nucleosome remodeling," said Ideker.

The process of repairing DNA damage caused by UV radiation and other sources, such as chemicals and other mutagens, is both simple and complicated. DNA-distorting lesions are detected by a cellular mechanism called the nucleotide excision repair (NER) pathway. The lesion is excised; the gap filled with new genetic material copied from an intact DNA strand by special enzymes; and the remaining nick sealed by another specialized enzyme.

However, NER does not work in isolation; rather it coordinates with other biological mechanisms, including RSC.

"DNA isn't free-floating in the cell, but is packaged into a tight structure called chromatin, which is DNA wound around proteins," said Rohith Srivas, PhD, a former research scientist in Ideker's lab and the study's first author. "In order for repair factors to fix DNA damage, they need access to naked DNA. This is where chromatin remodelers come in: In theory, they can be recruited to the DNA, open it up and allow repair factors to do their job."

Rohith said that other scientists have previously identified complexes that perform this role following UV damage. "Our results are novel because they show RSC is connected to both UV damage pathways: transcription coupled repair – which acts on parts of DNA being expressed – and global genome repair, which acts everywhere. All previous remodelers were linked only to global genome repair."

The scientists noted that the degree of genetic rewiring correlates with the dose of UV. Reparative interactions were observed at distinct low or high doses of UV, but not both. While genetic interactions at higher doses is not surprising, the authors said, the findings suggest low-dose UV radiation prompts specific interactions as well.

Co-authors include Anne-Ruxandra Carvunis, Department of Medicine, UCSD; Thomas Costelloe, Leiden University Medical Center; Sovan Sarkar and Peter J. McHugh, Weatherall Institute of Molecular Medicine, University of Oxford; Erik Malta, Su Ming Sun, Marijke Pool and Haico van Attikum, Leiden University Medical Center; Katherine Licon, Department of Medicine, Institute for Genomic Medicine, UCSD; Tibor van Welsem and Fred van Leeuwen, Netherlands Cancer Institute.

Funding came, in part, from the National Institutes of Health (grants ES014811, GM084279), the Netherlands Organization for Scientific Research, the Human Frontiers Science Program and a program grant from Cancer Research (UK).

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>