Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells remodel after UV radiation

20.12.2013
Researchers map cell's complex genetic interactions to fix damaged DNA

Researchers at the University of California, San Diego School of Medicine, with colleagues in The Netherlands and United Kingdom, have produced the first map detailing the network of genetic interactions underlying the cellular response to ultraviolet (UV) radiation.

The researchers say their study establishes a new method and resource for exploring in greater detail how cells are damaged by UV radiation and how they repair themselves. UV damage is one route to malignancy, especially in skin cancer, and understanding the underlying repair pathways will better help scientists to understand what goes wrong in such cancers.

The findings will be published in the December 26, 2013 issue of Cell Reports.

Principal investigator Trey Ideker, PhD, division chief of genetics in the UC San Diego School of Medicine and a professor in the UC San Diego Departments of Medicine and Bioengineering, and colleagues mapped 89 UV-induced functional interactions among 62 protein complexes. The interactions were culled from a larger measurement of more than 45,000 double mutants, the deletion of two separate genes, before and after different doses of UV radiation.

Specifically, they identified interactive links to the cell's chromatin structure remodeling (RSC) complex, a grouping of protein subunits that remodel chromatin – the combination of DNA and proteins that make up a cell's nucleus – during cell mitosis or division. "We show that RSC is recruited to places on genes or DNA sequences where UV damage has occurred and that it helps facilitate efficient repair by promoting nucleosome remodeling," said Ideker.

The process of repairing DNA damage caused by UV radiation and other sources, such as chemicals and other mutagens, is both simple and complicated. DNA-distorting lesions are detected by a cellular mechanism called the nucleotide excision repair (NER) pathway. The lesion is excised; the gap filled with new genetic material copied from an intact DNA strand by special enzymes; and the remaining nick sealed by another specialized enzyme.

However, NER does not work in isolation; rather it coordinates with other biological mechanisms, including RSC.

"DNA isn't free-floating in the cell, but is packaged into a tight structure called chromatin, which is DNA wound around proteins," said Rohith Srivas, PhD, a former research scientist in Ideker's lab and the study's first author. "In order for repair factors to fix DNA damage, they need access to naked DNA. This is where chromatin remodelers come in: In theory, they can be recruited to the DNA, open it up and allow repair factors to do their job."

Rohith said that other scientists have previously identified complexes that perform this role following UV damage. "Our results are novel because they show RSC is connected to both UV damage pathways: transcription coupled repair – which acts on parts of DNA being expressed – and global genome repair, which acts everywhere. All previous remodelers were linked only to global genome repair."

The scientists noted that the degree of genetic rewiring correlates with the dose of UV. Reparative interactions were observed at distinct low or high doses of UV, but not both. While genetic interactions at higher doses is not surprising, the authors said, the findings suggest low-dose UV radiation prompts specific interactions as well.

Co-authors include Anne-Ruxandra Carvunis, Department of Medicine, UCSD; Thomas Costelloe, Leiden University Medical Center; Sovan Sarkar and Peter J. McHugh, Weatherall Institute of Molecular Medicine, University of Oxford; Erik Malta, Su Ming Sun, Marijke Pool and Haico van Attikum, Leiden University Medical Center; Katherine Licon, Department of Medicine, Institute for Genomic Medicine, UCSD; Tibor van Welsem and Fred van Leeuwen, Netherlands Cancer Institute.

Funding came, in part, from the National Institutes of Health (grants ES014811, GM084279), the Netherlands Organization for Scientific Research, the Human Frontiers Science Program and a program grant from Cancer Research (UK).

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>