Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How cells in the nose detect odors

15.11.2012
New research by UC Riverside and Stanford University scientists identifies a braking mechanism in olfactory neurons that helps generate an amazing diversity of sensors in the nose

The human nose has millions of olfactory neurons grouped into hundreds of different neuron types. Each of these neuron types expresses only one odorant receptor, and all neurons expressing the same odorant receptor plug into one region in the brain, an organization that allows for specific odors to be sensed.

For example, when you smell a rose, only those neurons that express a specific odor receptor that detects a chemical the rose emits get activated, which in turn activates a specific region in the brain. Rotten eggs on the other hand, activate a different class of neurons that express a different (rotten egg) receptor and activate a different part of the brain. How the one-receptor-per-neuron pattern — critical for odor discrimination — is achieved in olfactory neurons is a mystery that has frustrated scientists for long.

Now a team of scientists, led by neurobiologists at the University of California, Riverside, has an explanation. Focusing on the olfactory receptor for detecting carbon dioxide in Drosophila (fruit fly), the researchers identified a large multi-protein complex in olfactory neurons, called MMB/dREAM, that plays a major role in selecting the carbon dioxide receptors to be expressed in appropriate neurons.

Study results appear in the Nov. 15 issue of Genes & Development. The research is featured on the cover of the issue.

Braking mechanism

According to the researchers, a molecular mechanism first blocks the expression of most olfactory receptor genes (~60) in the fly's antennae. This mechanism, which acts like a brake, relies on repressive histones —proteins that tightly wrap DNA around them. All insects and mammals are equipped with this mechanism, which keeps the large families of olfactory receptor genes repressed.

"How, then, do you release this brake so that only the carbon dioxide receptor is expressed in the carbon dioxide neuron while the remaining receptors are repressed?" said Anandasankar Ray, an assistant professor of entomology, whose lab conducted the research. "Our lab, in collaboration with a lab at Stanford University, has found that the MMB/dREAM multi-protein complex can act on the genes of the carbon dioxide receptors and de-repress the braking mechanism — akin to taking the foot off the brake pedal. This allows these neurons to express the receptors and respond to carbon dioxide."

Ray explained that one way to understand the mechanism in operation is to consider a typewriter. When none of the keys are pressed, a spring mechanism or "brake" can be imagined to hold the type bars away from the paper. When a key is pressed, however, the brake on that key is overcome and the appropriate letter is typed onto the paper. And just as typing only one letter in one spot is important for each letter to be recognized, expressing one receptor in one neuron lets different sensor types to be generated in the nose.

"If this were not the case, a single cell would express several receptors and there would be no diversity in sensor types," Ray said. "Our study then attempts to answer a fundamental question in neurobiology: How do we generate so much cellular diversity in the nervous system?"

Next, the researchers will test whether the receptor-braking mechanism they identified in Drosophila is also involved in other organisms like mosquitoes. They also will examine the other receptors in Drosophila to explain what de-represses each one of them.

Modulating response levels

The researchers also found that the activity of the MMB/dREAM multi-protein complex in Drosophila can alter levels of the carbon dioxide receptor and modulate the level of response to carbon dioxide.

"If you dial down the activity of the complex, you also dial down the expression of the carbon dioxide receptors, and the flies cannot sense carbon dioxide effectively," Ray said. "What's particularly encouraging is that this complex is highly conserved in mosquitoes as well, which means that we may be able to dial down the activity of this complex in mosquitoes using genetic strategies, and potentially lower the ability of mosquitoes to sense carbon dioxide, used by them to find human hosts. Because carbon dioxide receptors are so well conserved in mosquitoes, we expect that the regulatory mechanism we discovered in Drosophila may also be acting on mosquito carbon dioxide receptors."

Antenna versus maxillary palp

Interestingly, flies sense carbon dioxide with receptors located in their antennae, and avoid the source. Mosquitoes, on the other hand, are attracted to carbon dioxide and use receptors located not on their antenna but another organ called the maxillary palps (small structures present near the mouthparts). The research team found that two specific proteins in the multi-protein MMB/dREAM complex in mosquitoes have sequences that are quite different from those of the corresponding proteins in Drosophila.

"These proteins — E2F2 and Mip120 — could explain why Drosophila expresses carbon dioxide receptors in the antennae while the mosquito expresses them in its maxillary palp," Ray said.

The research done in Ray's lab was funded by a grant to Ray from the Whitehall Foundation. Besides Ray, UCR's Sarah Perry, the research paper's co-first author and a graduate student in the Genetics, Genomics and Bioinformatics program, and Sana Tharadra, a junior specialist in Ray's lab were involved in the research. They were joined in the work by Stanford University's Choon Kiat Sim, the co-first author of the research paper, and Joseph S. Lipsick, a professor of pathology and genetics.

The University of California, Riverside is a doctoral research university, a living laboratory for groundbreaking exploration of issues critical to Inland Southern California, the state and communities around the world. Reflecting California's diverse culture, UCR's enrollment has exceeded 21,000 students. The campus will open a medical school in 2013 and has reached the heart of the Coachella Valley by way of the UCR Palm Desert Center. The campus has an annual statewide economic impact of more than $1 billion. A broadcast studio with fiber cable to the AT&T Hollywood hub is available for live or taped interviews. UCR also has ISDN for radio interviews. To learn more, call (951) UCR-NEWS.

Iqbal Pittalwala | EurekAlert!
Further information:
http://www.ucr.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Rapid environmental change makes species more vulnerable to extinction

19.10.2017 | Life Sciences

Integrated lab-on-a-chip uses smartphone to quickly detect multiple pathogens

19.10.2017 | Interdisciplinary Research

Fossil coral reefs show sea level rose in bursts during last warming

19.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>