Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells help viruses during cell entry

10.07.2015

Adenoviruses cause numerous diseases, such as eye or respiratory infections, and they are widely used in gene therapy. Researchers from the University of Zurich have now discovered how these viruses penetrate the cells, a key step for infection and gene delivery The cell unwillingly supports virus entry and infection by providing lipids that are normally used to repair damaged membranes.

An intact cell membrane is essential for any cell to function. The external cell membrane can be damaged by mechanical stress, for example in muscle cells, or by pathogens, such as viruses and bacteria. Membrane damage can result in small pores, which lead to loss of valuable substances from the cell.

The cell can quickly repair such injuries to its membrane. Human adenoviruses also cause small pores in the cell membrane, as a team of cell biologists headed by Urs Greber, a professor at the Institute of Molecular Life Sciences at the University of Zurich, has now discovered.

These pores are too small for the virus to get directly into the cell but are large enough for the cell to recognize them as a danger signal and repair them in a matter of seconds. The adenovirus uses this very repair mechanism to trigger an infection.

Certain lipids help the virus to enter the cell

During this repair process, lipids – in particular ceramide lipids – are formed, which enable the virus to enter the cell more rapidly. The ceramide lipids cause the membrane to bend and endosomes to form.

Endosomes are small bubbles of lipids and proteins and they engulf extracellular material, such as nutrients, but also viruses. With the aid of the ceramide lipids, the virus increases the size of the membrane lesions, and can leave the endosome before the endosome becomes a lysosome and degrades the virus.

The virus then multiplies in the nucleus and subsequently infects other cells. “We have identified particular cellular lipids as key components for the virus to enter into cells, which is surprising as lipids have important roles in biology, but these roles are difficult to identify,” explains Stefania Luisoni, the first author on the study and a doctoral student at the Institute of Molecular Life Sciences.

The scientists identified a connection between the formation of a membrane pore by the virus and a cellular repair mechanism. These events form a positive feedback loop, which is part of the explanation for the high infection efficiency of the adenoviruses, which scientists have known for some time.

The work also identified a new inhibitor against the adenoviruses, which inhibits the cellular protein “lysosomal acid sphingomyelinase“, and blocks the formation of ceramide lipids in the plasma membrane. “Our results are potentially interesting for the development of new anti-viral agents, and they increase our understanding in how the adenovirus works in vaccination and gene therapy” concludes Greber.

Literature:

Stefania Luisoni, Maarit Suomalainen, Karin Boucke, Lukas B. Tanner, Markus R. Wenk, Xue Li Guan, Michal Grzybek, Ünal Coskun, Urs F. Greber. Co-option of Membrane Wounding Enables Virus
Penetration into Cells. Cell Host & Microbe, July 8, 2015. http://www.sciencedirect.com/science/article/pii/S1931312815002541

Weitere Informationen:

http://www.mediadesk.uzh.ch

Nathalie Huber | Universität Zürich

Further reports about: Life Molecular Sciences cell membrane endosome pores roles small viruses

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>