Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

These Cells Are Fishy, But That’s A Good Thing

09.09.2010
Scientists from the University of California, San Diego School of Medicine have identified dendritic antigen-presenting cells in zebrafish, opening the possibility that the tiny fish could become a new model for studying the complexities of the human immune system.

The study, reported in the online edition of the Proceedings of the National Academy of Sciences, was headed by David Traver, an associate professor in UCSD’s Department of Cellular and Molecular Medicine, with colleagues in UCSD’s Division of Biological Sciences and at the Brazilian National Cancer Institute.

Dendritic cells (DCs) form a crucial link between the innate and adaptive immune systems in mammals. Innate immunity is present in all organisms, providing immediate but short-lived and relatively non-specific defense against infection. Adaptive immunity is evolutionarily younger and more complex. It produces long-lasting protection against specific pathogens after initial exposure. Mammalian DCs act as sentries that bridge the innate and adaptive systems, confronting and engulfing newly discovered pathogens, then recruiting and activating antigen-specific T lymphocytes.

While DCs and the adaptive response have been well-documented in mammals, it was not clear whether these cells existed in non-mammalian vertebrates. Scientists knew that zebrafish – an increasingly popular animal model – exhibited many of the cellular elements of the adaptive system, including T and B lymphocytes, but no one had documented the presence of dendritic cells.

Traver and colleagues inventoried hematopoietic cells that could engulf labeled bacteria, looking for cells that appeared and behaved like mammalian DCs. They found multiple suspects, but finally zeroed in on one rare cell type that appears to fit all of the criteria for being a dendritic cell.

“All signs point to these cells being the fish version of dendritic cells,” said Traver. “They have all of the major characteristics.”

The discovery of DCs in zebrafish provides researchers with another model for investigating the mammalian immune system, particular with regard to humans. “The cool thing is that the more we learn, the more we realize that our immune systems are highly conserved,” said Traver. “Of course, there are differences. These differences, however, are variations on a theme, with the major themes of immune cell function being quite similar. Likewise, there are differences and variations in the dendritic cells of mice compared to humans, but the basics are the same.”

Zebrafish do offer some practical research advantages over other models.

First, the fish are translucent. “You can track individual cells and systems directly in the whole animal,” said Traver. “Very little is known about the initial immune response in mammals because we can’t see it happening. In these fish, we can visualize what happens in real time.”

Second, zebrafish are easy to handle and reproduce rapidly, making it easier to engineer and study mutations. “We can quickly grow generations of fish, letting the genetics tell us what’s important,” Traver said.

Co-authors with Traver are Geanncarlo Lugo-Villarino, Keir M. Balla and David L. Stachura of the Section of Cell and Developmental Biology, Division of Biological Sciences, UC San Diego and Miriam B.F. Werneck of the Division of Cellular Biology, Brazilian National Cancer Institute.

Scott LaFee | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>