Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells eat themselves into shape - Specialised endocytocis consumes membrane tendrils

08.08.2013
The process cells use to ‘swallow’ up nutrients, hormones and other signals from their environment – called endocytosis – can play a crucial role in shaping the cells themselves, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found.

The study, published today in Nature Communications, could help explain how the cells on your skin become different from those that line your stomach or intestine.

“We’re the first to show that endocytosis really drives changes in cell shape by directly remodelling the cell membrane,” says Stefano De Renzis, who led the work.

De Renzis and colleagues made the discovery by studying the fruit fly Drosophila, which starts life as a sac. The fly’s embryo is initially a single large cell, inside which nuclei divide and divide, until, at three hours old, the cell membrane moves in to surround each nucleus, so that in about an hour the embryo goes from one to 6000 cells.

As this happens, cells change shape. The cell membrane starts off with lots of finger-like tendrils sticking out of the embryo, and in about 10 minutes it smoothes down to a flat surface, like a rubber glove transforming into a round balloon.

The EMBL scientists found that, for this quick shape-shift to happen, the cells ‘eat up’ their finger-like offshoots. And, to quickly take up all that excess membrane, cells adapt their ‘feeding strategy’. Instead of bending a little pouch of membrane inwards and eventually detaching it into the cell as a round pod, or vesicle, the fruit fly embryo’s cells suck in long tubes of membrane. Once inside the cell, those tubes are then processed into smaller vesicles.

The findings, which include uncovering one of the key molecules involved, provide a new way of thinking about how cells take on the shape required to perform different tasks – and not only in fruit flies.

“This outward-facing – or apical – surface is the main difference between different kinds of epithelial cell,” says De Renzis. “The cells on your skin are smooth, but the ones lining your intestine have lots of ‘fingers’ like our fly embryos, and we know for instance that some bowel diseases involve problems in those ‘fingers’.”

For this work, Piotr Fabrowski in De Renzis’ lab developed a new strategy for imaging the fruit fly embryo and Aleksandar Necakov, a joint post-doctoral fellow in the De Renzis and John Briggs labs at EMBL, combined light and electron microscopy to see how different the swallowed membrane tubes are from the vesicles usually formed in endocytosis.

Published online in Nature Communications on 7 August 2013.
For images, videos and for more information please visit: www.embl.org/press/2013/130807_Heidelberg.
The videos accompanying this release are also available on the EMBL YouTube Channel: www.youtube.com/emblmedia.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
www.embl.org
Keep up-to-date with EMBL Research News at: www.embl.org/news

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>