Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells eat themselves into shape - Specialised endocytocis consumes membrane tendrils

08.08.2013
The process cells use to ‘swallow’ up nutrients, hormones and other signals from their environment – called endocytosis – can play a crucial role in shaping the cells themselves, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found.

The study, published today in Nature Communications, could help explain how the cells on your skin become different from those that line your stomach or intestine.

“We’re the first to show that endocytosis really drives changes in cell shape by directly remodelling the cell membrane,” says Stefano De Renzis, who led the work.

De Renzis and colleagues made the discovery by studying the fruit fly Drosophila, which starts life as a sac. The fly’s embryo is initially a single large cell, inside which nuclei divide and divide, until, at three hours old, the cell membrane moves in to surround each nucleus, so that in about an hour the embryo goes from one to 6000 cells.

As this happens, cells change shape. The cell membrane starts off with lots of finger-like tendrils sticking out of the embryo, and in about 10 minutes it smoothes down to a flat surface, like a rubber glove transforming into a round balloon.

The EMBL scientists found that, for this quick shape-shift to happen, the cells ‘eat up’ their finger-like offshoots. And, to quickly take up all that excess membrane, cells adapt their ‘feeding strategy’. Instead of bending a little pouch of membrane inwards and eventually detaching it into the cell as a round pod, or vesicle, the fruit fly embryo’s cells suck in long tubes of membrane. Once inside the cell, those tubes are then processed into smaller vesicles.

The findings, which include uncovering one of the key molecules involved, provide a new way of thinking about how cells take on the shape required to perform different tasks – and not only in fruit flies.

“This outward-facing – or apical – surface is the main difference between different kinds of epithelial cell,” says De Renzis. “The cells on your skin are smooth, but the ones lining your intestine have lots of ‘fingers’ like our fly embryos, and we know for instance that some bowel diseases involve problems in those ‘fingers’.”

For this work, Piotr Fabrowski in De Renzis’ lab developed a new strategy for imaging the fruit fly embryo and Aleksandar Necakov, a joint post-doctoral fellow in the De Renzis and John Briggs labs at EMBL, combined light and electron microscopy to see how different the swallowed membrane tubes are from the vesicles usually formed in endocytosis.

Published online in Nature Communications on 7 August 2013.
For images, videos and for more information please visit: www.embl.org/press/2013/130807_Heidelberg.
The videos accompanying this release are also available on the EMBL YouTube Channel: www.youtube.com/emblmedia.

Policy regarding use
EMBL press and picture releases including photographs, graphics and videos are copyrighted by EMBL. They may be freely reprinted and distributed for non-commercial use via print, broadcast and electronic media, provided that proper attribution to authors, photographers and designers is made.
Sonia Furtado Neves
EMBL Press Officer
Meyerhofstr. 1, 69117 Heidelberg, Germany
Tel.: +49 (0)6221 387 8263
Fax: +49 (0)6221 387 8525
sonia.furtado@embl.de
www.embl.org
Keep up-to-date with EMBL Research News at: www.embl.org/news

Sonia Furtado Neves | EMBL Research News
Further information:
http://www.embl.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>