Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Some cells don't know when to stop

20.11.2012
Certain mutated cells keep trying to replicate their DNA — with disastrous results — even after medications rob them of the raw materials to do so, according to new research from USC.

New imaging techniques allowed scientists to see for the first time that while chemotherapy drugs shut down the DNA replication process of most cancer cells, so-called "checkpoint mutants" just keep chugging along, unwinding the DNA and creating damaged DNA strands that can result in the kind of abnormalities seen in cancer cells.

"Older methods suggested that these checkpoint mutants stopped replicating and that the replication machinery simply fell apart to cause DNA damage," said Susan Forsburg, professor of molecular biology at the USC Dornsife College of Letters, Arts and Sciences. "Our new technique suggests that replication processes continue and actively contribute to the damage."

Forsburg is the corresponding author on a paper about the discovery that was published online in Molecular & Cellular Biology in October. She collaborated with lead author Sarah Sabatinos, a postdoctoral research associate at USC, and Marc Green, a research technician.

The team used a common chemotherapy drug to put stress on fission yeast cells while they were going through the DNA replication process. The drug starves cells for nucleotides, which are the molecules that cells use to build DNA strands.

Previous studies showed that normal cells recognize the loss of nucleotides and stop trying to replicate their DNA — similar to how a driver who runs low on gas stops before he runs the engine dry.

What the researchers found is that the checkpoint mutants ignore this signal. Using the metaphor above, the driver of the car can't take his foot off of the accelerator and keeps going until his engine sputters to a stop. While this won't necessarily damage a car engine, it's catastrophic for DNA.

These mutant cells keep trying to replicate their DNA, unwinding the strands, until the DNA strands reach a "collapse point" where they break — arguably the worst kind of damage that can be done to a cell.

"We predict that this is a source of increased cancer risk in human cells that harbor checkpoint mutations," Sabatinos said. "Replication-fork instability or collapse may occur at a low frequency in these mutated cells without drug treatment, leading to more frequent DNA changes down the road."

The next step will be to determine what happens to the small fraction of mutant cells that survive this treatment.

"By bringing to bear a sophisticated combination of genetic tools, drug treatment and state-of-the-art imaging, Susan Forsburg and her co-workers have elicited a fresh perspective on a long-standing problem," said Michael Reddy, who oversees DNA replication grants at the National Institutes of Health's National Institute of General Medical Sciences, which funded the work.

"Their fundamentally revised scenario of the dynamics of fork collapse is likely to lead to invaluable insights as to how checkpoint-defective human cancer cells preserve their DNA, thereby resisting chemotherapy," he said.

A time-lapse video of cells, imaged to display a single strand of DNA (light blue) and DNA breaks (yellow) during drug treatment, can be found online here: http://youtu.be/preMPZjPWgQ

Robert Perkins | EurekAlert!
Further information:
http://www.usc.edu
http://youtu.be/preMPZjPWgQ

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>