Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do cells count?

12.01.2009
IGC scientists take a step further in unravelling mystery of how cells control number of centrosomes

In the 13th January print edition of the journal Current Biology, IGC researchers provide insight into an old mystery in cell biology, and offer up new clues to understanding cancer.

Inês Cunha Ferreira and Mónica Bettencourt Dias, working with researchers at the universities of Cambridge, UK, and Siena, Italy, unravelled the mystery of how cells count the number of centrosomes, the structure that regulates the cell’s skeleton, controls the multiplication of cells, and is often transformed in cancer.

This research addresses an ancient question: how does a cell know how many centrosomes it has? It is equally an important question, since both an excess or absence of centrosomes are associated with disease, from infertility to cancer.

Each cell has, at most, two centrosomes. Whenever a cell divides, each centrosome gives rise to a single daughter centrosome, inherited by one of the daughter cells. Thus, there is strict control on progeny! By using the fruit fly, the IGC researchers identified the molecule that is responsible for this ‘birth control policy’ of the cell – a molecule called Slimb. In the absence of Slimb, each mother centrosome can give rise to several daughters in one go, leading to an excess of centrosomes in the cell.

In recent years, Monica’s group has produced several important findings relating to centrosome control: they identified another molecule, SAK, as the trigger for the formation of centrosomes. When SAK is absent, there are no centrosomes, whereas if SAK is overproduced, the cell has too many centrosomes. These results were published in the prestigious journals Current Biology and Science, in 2005 and 2007. Now, the group has discovered the player in the next level up: Slimb mediates the destruction of SAK, and in so doing, ultimately controls the number of centrosomes in a cell.

Monica explains, ‘We carried out these studies in the fruit fly, but we know that the same mechanism acts in mice and even in humans. Knowing that Slimb is altered in several cancers opens up new avenues of research into the mechanisms underlying the change in the number of centrosomes seen in many tumours’.

Mónica first became interested in centrosomes and in SAK when she was an Associate Researcher at Cambridge University, UK, and has pursued this interest at the IGC, where she has been group leader of the Cell Cycle Regulation laboratory since 2006. Inês Cunha Ferreira travelled with Monica from Cambridge, and is now in her second year of the in-house PhD programme. Two other PhD students in the lab also contributed to this research, Ana Rodrigues Martins and Inês Bento.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt/media/press

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>