Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How do cells count?

12.01.2009
IGC scientists take a step further in unravelling mystery of how cells control number of centrosomes

In the 13th January print edition of the journal Current Biology, IGC researchers provide insight into an old mystery in cell biology, and offer up new clues to understanding cancer.

Inês Cunha Ferreira and Mónica Bettencourt Dias, working with researchers at the universities of Cambridge, UK, and Siena, Italy, unravelled the mystery of how cells count the number of centrosomes, the structure that regulates the cell’s skeleton, controls the multiplication of cells, and is often transformed in cancer.

This research addresses an ancient question: how does a cell know how many centrosomes it has? It is equally an important question, since both an excess or absence of centrosomes are associated with disease, from infertility to cancer.

Each cell has, at most, two centrosomes. Whenever a cell divides, each centrosome gives rise to a single daughter centrosome, inherited by one of the daughter cells. Thus, there is strict control on progeny! By using the fruit fly, the IGC researchers identified the molecule that is responsible for this ‘birth control policy’ of the cell – a molecule called Slimb. In the absence of Slimb, each mother centrosome can give rise to several daughters in one go, leading to an excess of centrosomes in the cell.

In recent years, Monica’s group has produced several important findings relating to centrosome control: they identified another molecule, SAK, as the trigger for the formation of centrosomes. When SAK is absent, there are no centrosomes, whereas if SAK is overproduced, the cell has too many centrosomes. These results were published in the prestigious journals Current Biology and Science, in 2005 and 2007. Now, the group has discovered the player in the next level up: Slimb mediates the destruction of SAK, and in so doing, ultimately controls the number of centrosomes in a cell.

Monica explains, ‘We carried out these studies in the fruit fly, but we know that the same mechanism acts in mice and even in humans. Knowing that Slimb is altered in several cancers opens up new avenues of research into the mechanisms underlying the change in the number of centrosomes seen in many tumours’.

Mónica first became interested in centrosomes and in SAK when she was an Associate Researcher at Cambridge University, UK, and has pursued this interest at the IGC, where she has been group leader of the Cell Cycle Regulation laboratory since 2006. Inês Cunha Ferreira travelled with Monica from Cambridge, and is now in her second year of the in-house PhD programme. Two other PhD students in the lab also contributed to this research, Ana Rodrigues Martins and Inês Bento.

Ana Godinho | alfa
Further information:
http://www.igc.gulbenkian.pt/media/press

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>