Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why are some cells more cancer prone?

28.08.2013
Cells in the body wear down over time and die. In many organs, like the small intestine, adult stem cells play a vital role in maintaining function by replacing old cells with new ones.

Learning about the nature of tissue stem cells can help scientists understand exactly how our organs are built, and why some organs generate cancer frequently, but others only rarely.

New work from Carnegie's Alexis Marianes and Allan Spradling used some of the most experimentally accessible tissue stem cells, the adult stem cells in the midsection of the fruit fly gut, with surprising results. Their findings are published by eLife.

Like the small intestine in mammals, the midgut of fruit flies is where most digestion takes place. Scientists had noticed a few regions in both the midgut and small intestine were specialized for certain tasks, such as absorbing iron, but had little understanding of the extent of these regional differences or how they were maintained.

Marianes and Spradling were able to demonstrate that there are 10 different major subregions within the fruit fly midgut. They occur in a specific order and each is responsible for different digestive and nutrient-storage processes, as evidenced by the expression of many specific genes. Most importantly, the adult stem cells in each region are specialized as well, and only support the types of cells found within it. Thus, during development, achieving the right spatial sequence of stem cells is probably critical to causing intestines to be built and maintained in order to function optimally.

The researchers also showed that tumors arise preferentially in specific regions of the midgut, a phenomenon well known in oncology. They showed the tumor-prone regions were specialized for lipid absorption, and stem cell function in them differed in small ways from stem cell function in other regions.

This work will motivate the search for fine-grained specialization in both tissue organization and in stem cells within many mammalian tissues. These subtle differences may explain the surprising results that are sometimes obtained following the removal or transplantation of human tissue. This must be considered carefully in ongoing attempts to utilize stem cells therapeutically.

Finally, it may be possible to learn what makes some stem cells more susceptible to cancer than others, and develop strategies to counteract this tendency.

This work was funded by the Howard Hughes Medical Institue.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Allan Spradling | EurekAlert!
Further information:
http://www.ciwemb.edu

More articles from Life Sciences:

nachricht Oestrogen regulates pathological changes of bones via bone lining cells
28.07.2017 | Veterinärmedizinische Universität Wien

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Abrupt motion sharpens x-ray pulses

Spectrally narrow x-ray pulses may be “sharpened” by purely mechanical means. This sounds surprisingly, but a team of theoretical and experimental physicists developed and realized such a method. It is based on fast motions, precisely synchronized with the pulses, of a target interacting with the x-ray light. Thereby, photons are redistributed within the x-ray pulse to the desired spectral region.

A team of theoretical physicists from the MPI for Nuclear Physics (MPIK) in Heidelberg has developed a novel method to intensify the spectrally broad x-ray...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

New 3-D imaging reveals how human cell nucleus organizes DNA and chromatin of its genome

28.07.2017 | Health and Medicine

Heavy metals in water meet their match

28.07.2017 | Power and Electrical Engineering

Oestrogen regulates pathological changes of bones via bone lining cells

28.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>