Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in blood vessel found to cling more tightly in regions of rapid flow

27.04.2012
Clogging of pipes leading to the heart is the planet's number one killer. Surgeons can act as medical plumbers to repair some blockages, but we don't fully understand how this living organ deteriorates or repairs itself over time.

Researchers at the University of Washington have studied vessel walls and found the cells pull more tightly together, reducing vascular leakage, in areas of fast-flowing blood. The finding could influence how doctors design drugs to treat high cholesterol, or how cardiac surgeons plan their procedures.


Nathan Sniadecki, University of Washington

A layer of cells that coat the pulmonary artery grown on a bed of silicon microposts. After being exposed to a rapid flow, the cells make tighter junctions and tug more strongly on their neighbors.

Their paper will be published in an upcoming issue of the American Journal of Physiology - Heart and Circulatory Physiology.

"Our results indicate that these cells can sense the kind of flow that they’re in, and structurally change how they hold themselves together," said lead author Nathan Sniadecki, a UW assistant professor of mechanical engineering. "This highlights the role that cellular forces play in the progression of cardiovascular disease."

It's known that the arteries carrying blood are leakier in areas of slow flow, promoting cholesterol buildup in those areas. But medical researchers believed this leakage was mostly biochemical – that cells would sense the slower flow and modify how proteins and enzymes function inside the cell to allow for more exchange.

The new results show that, like a group of schoolchildren huddling closer in a gust of wind, the cells also pull more tightly together when the blood is flowing past.

"The mechanical tugging force leads to a biochemical change that allows more and more proteins at the membrane to glue together," Sniadecki said. "We're still trying to understand what's happening here, and how mechanical tugging leads more proteins to localize and glue at the interface."

Sniadecki's group looks at the biomechanics of individual cells. For this experiment, they grew a patch of human endothelial cells, the thin layer of cells that line the inner walls of arteries and veins and act as a sort of nonstick coating for the vessels' walls. They grew the patch on an area about the width of a human hair, manufactured with 25 by 25 tiny flexible silicon posts.

The researchers then looked at how much the cells bent the posts under different flow conditions in order to calculate how strongly the cells were tugging on their neighbors. When the flow was fast, the force between the cells increased, while the gaps between cells shrank.

Knowing how cells respond to blood flow could help find new drugs to promote this tugging between cells. Better understanding of the interaction between blood flow and heart health could also guide surgeries.

"People could do simulations so a surgeon goes, ‘Ah, I should cut here versus over here, because that reconstruction will be a smoother vessel and will lead to fewer complications down the line, or as I put this stent in, put it here and make it more aerodynamic in design,'" Sniadecki said.

Co-authors are Lucas Ting, Joon Jung, Benjamin Shuman, Shirin Feghhi, Sangyoon Han, Marita Rodriguez in the UW's department of mechanical engineering, and Jessica Jahn at UW Medicine.

The research was funded by the National Institutes of Health, the National Science Foundation, the UW Medical Student Research Training Program and the UW Royalty Research Fund.

For more information, contact Sniadecki at 206-685-6591 or nsniadec@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/articles/cells-in-blood-vessel-found-to-cling-more-tightly-in-regions-of-rapid-flow

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>