Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in blood vessel found to cling more tightly in regions of rapid flow

27.04.2012
Clogging of pipes leading to the heart is the planet's number one killer. Surgeons can act as medical plumbers to repair some blockages, but we don't fully understand how this living organ deteriorates or repairs itself over time.

Researchers at the University of Washington have studied vessel walls and found the cells pull more tightly together, reducing vascular leakage, in areas of fast-flowing blood. The finding could influence how doctors design drugs to treat high cholesterol, or how cardiac surgeons plan their procedures.


Nathan Sniadecki, University of Washington

A layer of cells that coat the pulmonary artery grown on a bed of silicon microposts. After being exposed to a rapid flow, the cells make tighter junctions and tug more strongly on their neighbors.

Their paper will be published in an upcoming issue of the American Journal of Physiology - Heart and Circulatory Physiology.

"Our results indicate that these cells can sense the kind of flow that they’re in, and structurally change how they hold themselves together," said lead author Nathan Sniadecki, a UW assistant professor of mechanical engineering. "This highlights the role that cellular forces play in the progression of cardiovascular disease."

It's known that the arteries carrying blood are leakier in areas of slow flow, promoting cholesterol buildup in those areas. But medical researchers believed this leakage was mostly biochemical – that cells would sense the slower flow and modify how proteins and enzymes function inside the cell to allow for more exchange.

The new results show that, like a group of schoolchildren huddling closer in a gust of wind, the cells also pull more tightly together when the blood is flowing past.

"The mechanical tugging force leads to a biochemical change that allows more and more proteins at the membrane to glue together," Sniadecki said. "We're still trying to understand what's happening here, and how mechanical tugging leads more proteins to localize and glue at the interface."

Sniadecki's group looks at the biomechanics of individual cells. For this experiment, they grew a patch of human endothelial cells, the thin layer of cells that line the inner walls of arteries and veins and act as a sort of nonstick coating for the vessels' walls. They grew the patch on an area about the width of a human hair, manufactured with 25 by 25 tiny flexible silicon posts.

The researchers then looked at how much the cells bent the posts under different flow conditions in order to calculate how strongly the cells were tugging on their neighbors. When the flow was fast, the force between the cells increased, while the gaps between cells shrank.

Knowing how cells respond to blood flow could help find new drugs to promote this tugging between cells. Better understanding of the interaction between blood flow and heart health could also guide surgeries.

"People could do simulations so a surgeon goes, ‘Ah, I should cut here versus over here, because that reconstruction will be a smoother vessel and will lead to fewer complications down the line, or as I put this stent in, put it here and make it more aerodynamic in design,'" Sniadecki said.

Co-authors are Lucas Ting, Joon Jung, Benjamin Shuman, Shirin Feghhi, Sangyoon Han, Marita Rodriguez in the UW's department of mechanical engineering, and Jessica Jahn at UW Medicine.

The research was funded by the National Institutes of Health, the National Science Foundation, the UW Medical Student Research Training Program and the UW Royalty Research Fund.

For more information, contact Sniadecki at 206-685-6591 or nsniadec@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/articles/cells-in-blood-vessel-found-to-cling-more-tightly-in-regions-of-rapid-flow

More articles from Life Sciences:

nachricht Not of Divided Mind
19.01.2017 | Hertie-Institut für klinische Hirnforschung (HIH)

nachricht CRISPR meets single-cell sequencing in new screening method
19.01.2017 | CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>