Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells in blood vessel found to cling more tightly in regions of rapid flow

27.04.2012
Clogging of pipes leading to the heart is the planet's number one killer. Surgeons can act as medical plumbers to repair some blockages, but we don't fully understand how this living organ deteriorates or repairs itself over time.

Researchers at the University of Washington have studied vessel walls and found the cells pull more tightly together, reducing vascular leakage, in areas of fast-flowing blood. The finding could influence how doctors design drugs to treat high cholesterol, or how cardiac surgeons plan their procedures.


Nathan Sniadecki, University of Washington

A layer of cells that coat the pulmonary artery grown on a bed of silicon microposts. After being exposed to a rapid flow, the cells make tighter junctions and tug more strongly on their neighbors.

Their paper will be published in an upcoming issue of the American Journal of Physiology - Heart and Circulatory Physiology.

"Our results indicate that these cells can sense the kind of flow that they’re in, and structurally change how they hold themselves together," said lead author Nathan Sniadecki, a UW assistant professor of mechanical engineering. "This highlights the role that cellular forces play in the progression of cardiovascular disease."

It's known that the arteries carrying blood are leakier in areas of slow flow, promoting cholesterol buildup in those areas. But medical researchers believed this leakage was mostly biochemical – that cells would sense the slower flow and modify how proteins and enzymes function inside the cell to allow for more exchange.

The new results show that, like a group of schoolchildren huddling closer in a gust of wind, the cells also pull more tightly together when the blood is flowing past.

"The mechanical tugging force leads to a biochemical change that allows more and more proteins at the membrane to glue together," Sniadecki said. "We're still trying to understand what's happening here, and how mechanical tugging leads more proteins to localize and glue at the interface."

Sniadecki's group looks at the biomechanics of individual cells. For this experiment, they grew a patch of human endothelial cells, the thin layer of cells that line the inner walls of arteries and veins and act as a sort of nonstick coating for the vessels' walls. They grew the patch on an area about the width of a human hair, manufactured with 25 by 25 tiny flexible silicon posts.

The researchers then looked at how much the cells bent the posts under different flow conditions in order to calculate how strongly the cells were tugging on their neighbors. When the flow was fast, the force between the cells increased, while the gaps between cells shrank.

Knowing how cells respond to blood flow could help find new drugs to promote this tugging between cells. Better understanding of the interaction between blood flow and heart health could also guide surgeries.

"People could do simulations so a surgeon goes, ‘Ah, I should cut here versus over here, because that reconstruction will be a smoother vessel and will lead to fewer complications down the line, or as I put this stent in, put it here and make it more aerodynamic in design,'" Sniadecki said.

Co-authors are Lucas Ting, Joon Jung, Benjamin Shuman, Shirin Feghhi, Sangyoon Han, Marita Rodriguez in the UW's department of mechanical engineering, and Jessica Jahn at UW Medicine.

The research was funded by the National Institutes of Health, the National Science Foundation, the UW Medical Student Research Training Program and the UW Royalty Research Fund.

For more information, contact Sniadecki at 206-685-6591 or nsniadec@uw.edu

Hannah Hickey | EurekAlert!
Further information:
http://www.uw.edu
http://www.washington.edu/news/articles/cells-in-blood-vessel-found-to-cling-more-tightly-in-regions-of-rapid-flow

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>