Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cells that Avoid Suicide May Become Cancerous

02.10.2008
When a cell’s chromosomes lose their ends, the cell usually kills itself to stem the genetic damage. But University of Utah biologists discovered how those cells can evade suicide and start down the path to cancer.

Details of how the process works someday may provide new ways to treat cancer.

The new study of fruit flies is the first to show in animals that losing just one telomere – the end of a chromosome – can lead to many abnormalities in a cell’s chromosomes, which are strands of DNA that carry genes.

“The essential point is that loss of a single telomere may be a primary event that puts a cell on the road to cancer,” says Kent Golic, a professor of biology at the University of Utah and senior author of the study, which will be published online this week in the December issue of the journal Genetics.

Fruit flies have four pairs of chromosomes. Humans have 23 pairs. Each chromosome has two ends, called telomeres, which often are compared with the plastic tips of shoe laces. When those tips are lost or break, the shoelace frays. Previous research has shown that aging and cancer often are associated with loss or shortening of telomeres.

Damaged Cells Usually Kill Themselves to Avoid Becoming Cancerous

To protect an organism against cancer, most cells with broken or missing telomeres undergo “apoptosis,” also known as cell suicide. But Golic and Simon Titen, a postdoctoral fellow in biology, found how fruit fly cells with a missing telomere sometimes avoid suicide and instead continue to divide and develop early characteristics of cancer.

Normally when a chromosome is damaged, the cell carrying the chromosome turns on a gene named p53, which helps kill the cell. When mutated, p53 fails to carry out this vital function. That is why mutant p53 is a cancer-causing gene and is found in most human tumors.

Golic and Titen found that normal p53 and so-called “checkpoint” proteins named Chk1 and Chk2 are required for the suicide of fruit fly cells with a missing telomere.

They also found that a non-mutant cell lacking a telomere occasionally escapes suicide and divides. Then, its progeny accumulate defects, including the wrong number of chromosomes or chromosomes that have exchanged pieces with each other. Those defects are hallmarks of cancer cells.

One possible reason a cell avoids suicide even after telomere loss and other damage is that chromosomes in the cell’s offspring regain telomeres.

“All cancer cells have figured out how to add new telomeres, which allows them to survive and divide indefinitely,” says Titen. “By interfering with this process, it might be possible to provide a route therapeutically to treat cancer.”

A telomere is made of short sequences of DNA repeated hundreds of times. Proteins bind to the DNA, forming a cap or telomere that protects the end of the chromosome.

In humans, cells in certain tissues, such as the skin, continue to divide over a lifetime. Each time a cell divides, the telomeres become shorter until, in rare cases, the rest of the chromosome is no longer protected. It has been proposed that this can trigger cancer, but previous studies have been done only in yeast or cultured animal cells that are grown in a dish. The new Utah study shows in flies that telomere loss can cause cancer-like changes in a cell.

When Cell Suicide is Blocked, Cells Start on the Road to Cancer

Fruit flies often are used for chromosomal studies because they share 60 percent of their genes with humans, and it is unethical to cause genetic abnormalities in humans. Also, the process by which fly cells grow and divide are comparable with human cells.

To trigger telomere loss, the researchers inserted into the flies a gene from common baker’s yeast. The gene makes an enzyme that breaks and rejoins DNA. When they turned on the enzyme, it led to the loss of a single telomere in each affected fruit fly cell.

The researchers then looked at what happened to the cells that lost a telomere.

“When we looked to see what happens to cells [those lacking a telomere], we found that most died – which is good – because those that didn’t die accumulated abnormal chromosomes, which is characteristic of cancer cells,” Golic explains.

Next, they repeated the experiment using flies in which p53, Chk1 or Chk2 were mutated – thus crippling cells’ ability to commit suicide. The net effect of crippling the cell suicide genes and then damaging the chromosomes was to allow more damaged chromosomes to survive instead of committing suicide.

In a normal fly, when a telomere is lost, only 10 percent to 20 percent of cells with such damage survive, with the rest killing themselves. But in flies whose suicide genes were crippled, up to 75 percent of cells survived despite lacking a telomere.

“Cells containing chromosomes with broken ends turn on a signal and Chk2 gets activated, and then that activates p53 which eventually leads to cell death,” Golic says. “Chk1 also becomes activated and eventually activates p53.”

Titen adds: “Chk1 and Chk2 were not previously known to be involved in cell death due to loss of a telomere.”

The researchers found that if a damaged cell avoids suicide due to p53, Chk1 or Chk2, there is another way it can kill itself and avoid starting down the road to cancer.

This occurs when the damaged cell divides, and its progeny have the wrong number of chromosomes. The resulting genetic imbalance can cause cell suicide. Thus, telomere loss also is linked to this alternative form of cell suicide. The study shows for the first time that this type of cell death – which doesn’t use p53 – is caused by gaining or losing copies of other important genes, Golic says.

Cells that bypass all of the protective suicide measures divide multiple times, accumulating more and more chromosomal abnormalities. In humans, such cells are likely to develop into cancer cells.

The study was funded by the National Institutes of Health.

Contacts:

-- Kent Golic, professor of biology – office (801) 581-8726, lab (801) 585-5208, golic@biology.utah.edu

-- Simon Titen, postdoctoral fellow in biology – cellular (801) 641-7657,
lab (801) 585-5208, titen@biology.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.biology.utah.edu

Further reports about: CHK2 Cell Chk1 Chromosome DNA Golic Telomere Titen avoid cancer cells cancerous cell death damaged flies fruit fly p53 suicide

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

Construction of practical quantum computers radically simplified

05.12.2016 | Information Technology

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>