Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why Many Cells are Better than One

13.10.2011
Limited decision-making ability of individual cells is bolstered in masses

Researchers from Johns Hopkins have quantified the number of possible decisions that an individual cell can make after receiving a cue from its environment, and surprisingly, it’s only two.

The first-of-its-kind study combines live-cell experiments and math to convert the inner workings of the cell decision-making process into a universal mathematical language, allowing information processing in cells to be compared with the computing power of machines.

The research published on September 15 in Science also demonstrates why it’s advantageous for cells to cooperate to overcome their meager individual decision-making abilities by forming multicellular organisms.

“Each cell interprets a signal from the environment in a different way, but if many cells join together, forming a common response, the result can eliminate the differences in the signal interpretation while emphasizing the common response features,” says Andre Levchenko, Ph.D., associate professor of biomedical engineering and member of the Institute for Cell Engineering. “If a single blood vessel cell gets a signal to contract, it is meaningless since all the surrounding cells in the blood vessel need to get the message to narrow the blood vessel. Cell collaboration does wonders in terms of their ability to transfer information and convert it into decision-making.”

One bit of information represents two choices: yes or no, on or off, or one or zero in binary code, used by computer programmers. Two bits doubles the amount of choices to four and so on for each bit added.

To determine how many bits of information a cell has for each decision, the researchers had to measure a real biological decision in progress. They decided to look at a well-known cell stimulant, a protein called tumor necrosis factor (TNF), responsible for turning on the inflammation response in the body. When cells detect TNF on their surface, they transmit a message that sends a messenger protein into the nucleus to turn on inflammation genes.

The researchers administered different amounts of TNF to mouse cells in dishes, and then they determined whether the messenger went to the nucleus. They bound the messenger with a glowing tag; the more messenger present in the nucleus, the brighter the nucleus would appear under a microscope. The researchers used a computer program to quantify the brightness of the nucleus after the addition of TNF. From this, they calculated a single cell’s response to be 0.92 bits of information, allowing for two possible decisions.

“What we get from this information is that the cell can only reliably detect the presence of the signal or not, nothing more precise,” says Levchenko. “This was a little bit dissatisfying because we were hoping that the cells could recognize many more levels of the input and use that to make more decisions than just two.”

The researchers tested other scenarios to see if cells could respond in more ways. They looked at decision outputs other than inflammation, like development and cell survival. They also looked to see if the cell’s response to a certain stimulus changed over time, as well as explored whether receiving different input signals that led to the same outcome could boost decision-making potential. None of these different situations drove cells to show greater decision-making ability. Cells seem to have distinct limits to the amount of information they intake that confines the number of decisions they can make, says Levchenko.

Finally, the researchers investigated the idea that cells could collectively respond to input to make decisions together. They went back to quantifying the brightness of the nucleus in response to TNF, but this time they examined clusters of cells and compiled this data into their equation. They found that clusters of as few as 14 cells could produce 1.8 bits of information, corresponding to somewhere from 3 to 4 different potential decisions for the cluster.

The fact that combinations of cells can make more decisions suggests why being multicellular is such a good thing in the animal world and why cells can sometimes achieve so much more if they are working together than separately, says Levchenko.

“We’ve learned that there is a clear limit on what can happen in a cell, and we are actually quantifying for the first time what the cells can and can’t do,” says Levchenko. “A lot of people were surprised that this was even possible. This framework we’ve laid will allow us to test what kind of tricks cells use, other than being multicellular, to expand their decision repertoire.”

The first author on the study, Raymond Cheong, was responsible for much of the experimental and theoretical analysis. Other researchers involved included Alex Rhee and Chiaochun Joanne Wang of Johns Hopkins and Ilya Nemenman of Emory University.

The study was supported by the National Institutes of Health, the Medical Scientist Training Program at Johns Hopkins and the Los Alamos National Laboratory Directed Research and Development Program.

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>