Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell signaling key to stopping growth and migration of brain cancer cells

18.01.2012
Brain cancer is hard to treat: it’s not only strong enough to resist most chemotherapies, but also nimble enough to migrate away from radiation or surgery to regrow elsewhere.

New research at the University of Colorado Cancer Center shows how to stop both.

Specifically, cells signal themselves to survive, grow, reproduce, and migrate. Two years ago, researchers at the CU Cancer Center showed that turning off a family of signals made brain cancer cells less robust – it sensitized these previously resistant cells to chemotherapy.

But the second major problem – migration – potentially remained.

“I thought, aha, I have this great way to treat this cancer, but needed to check that we weren’t going to cause other problems. We wondered if turning off TAM family signaling would make brain cancer cells crawl away to a new spot where they might make new problems,” says Amy Keating, MD, investigator at the CU Cancer Center and senior author of the study, recently published in the journal Nature: Oncogene.

So Keating and colleagues went inside this TAM signaling family to explore how its members affect not only proliferation but migration. When they inhibited signaling through the other family member Axl, little changed (actually this was good: at least turning off this signaling pathway didn’t promote cancer cell migration).

But when Keating and colleagues turned off signaling through the Mer pathway, it was neither too hot nor too cold – it was just right, and these affected cancer cells were not only more sensitive to chemotherapy, but also unable to escape to safer areas of the brain.

Currently glioblastoma multiforme affects 45,000 people in the United States every year, the majority of whom will not survive 14 months after diagnosis.

“This represents a new targeted therapy, offering a potential new direction that nobody’s tried before,” says Keating, assistant professor of pediatrics at the University of Colorado School of Medicine.

After these extremely promising results with cell lines, Keating and colleagues are currently testing the technology in mice, after which all involved hope to move soon to human clinical trials.

Amy Keating is generously supported by the St Baldrick’s Foundation and the NIH K12 HD068372Child Health Research Career Development Award.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht Research team creates new possibilities for medicine and materials sciences
22.01.2018 | Humboldt-Universität zu Berlin

nachricht Saarland University bioinformaticians compute gene sequences inherited from each parent
22.01.2018 | Universität des Saarlandes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>