Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell signaling key to stopping growth and migration of brain cancer cells

18.01.2012
Brain cancer is hard to treat: it’s not only strong enough to resist most chemotherapies, but also nimble enough to migrate away from radiation or surgery to regrow elsewhere.

New research at the University of Colorado Cancer Center shows how to stop both.

Specifically, cells signal themselves to survive, grow, reproduce, and migrate. Two years ago, researchers at the CU Cancer Center showed that turning off a family of signals made brain cancer cells less robust – it sensitized these previously resistant cells to chemotherapy.

But the second major problem – migration – potentially remained.

“I thought, aha, I have this great way to treat this cancer, but needed to check that we weren’t going to cause other problems. We wondered if turning off TAM family signaling would make brain cancer cells crawl away to a new spot where they might make new problems,” says Amy Keating, MD, investigator at the CU Cancer Center and senior author of the study, recently published in the journal Nature: Oncogene.

So Keating and colleagues went inside this TAM signaling family to explore how its members affect not only proliferation but migration. When they inhibited signaling through the other family member Axl, little changed (actually this was good: at least turning off this signaling pathway didn’t promote cancer cell migration).

But when Keating and colleagues turned off signaling through the Mer pathway, it was neither too hot nor too cold – it was just right, and these affected cancer cells were not only more sensitive to chemotherapy, but also unable to escape to safer areas of the brain.

Currently glioblastoma multiforme affects 45,000 people in the United States every year, the majority of whom will not survive 14 months after diagnosis.

“This represents a new targeted therapy, offering a potential new direction that nobody’s tried before,” says Keating, assistant professor of pediatrics at the University of Colorado School of Medicine.

After these extremely promising results with cell lines, Keating and colleagues are currently testing the technology in mice, after which all involved hope to move soon to human clinical trials.

Amy Keating is generously supported by the St Baldrick’s Foundation and the NIH K12 HD068372Child Health Research Career Development Award.

Garth Sundem | EurekAlert!
Further information:
http://www.ucdenver.edu

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>