Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Shape Changes during Mitosis

12.02.2013
Heidelberg scientists study transient degradation of an actin regulator

Scientists at the Center for Molecular Biology of Heidelberg University have gained new insight into the process of mitosis in mammalian cells.


Immunofluorescence staining of a cell in early mitosis with normal (right) and with elevated (left) levels of Eps8. The actin cytoskeleton is shown in green and DNA in red. Blue colours depicts a specific marker for mitosis.

Credits: Dr. Achim Werner

Researchers under the direction of Prof. Dr. Frauke Melchior, in collaboration with colleagues from Göttingen, Milan and Memphis, have succeeded in deciphering a heretofore unknown mechanism that plays a key role in cell shape changes during mitosis. They investigated the transient degradation of a protein that regulates specific structures of the mechanical scaffold of the cell, the actin cytoskeleton. The results of the research on this actin regulator were published in the journal “Nature Cell Biology”.

Equally dividing the chromosomes between two daughter cells during mitosis is a multi-step and precisely controlled process. After break-down of the cell nucleus and mitotic spindle formation, the chromosomes pull apart and travel towards the spindle poles. Two cell nuclei are then formed and the cell splits into two daughter cells. According to Prof. Melchior, it has long been known that the cell’s actin cytoskeleton – threadlike cellular structures made up of the structural protein actin – is also a major regulating component of this process. Due to dynamic changes before, during and after the mitosis phase, the actin cytoskeleton contributes to the mechanical requirements for the symmetrical distribution of chromosomes to the two new daughter cells. “We barely understand how and why the actin network of the cell changes, especially in the early phases of mitosis. Of particular interest is how cells assume a round shape when cell division starts and then flatten out again once it ends”, explains Dr. Achim Werner, a key contributing member of Prof. Melchior's research group.

The Heidelberg researchers were now able to show that the transient degradation of an actin regulator in the cell's cytoskeleton, known as Eps8, plays an important role in the mitosis phase. The degradation of Eps8, which only appears to be a “stable” protein, is mediated by a little known Ubiquitin E3 ligase. “If you turn off this degradation mechanism, cell rounding is delayed and the early phases of mitosis slow down. If, however, there is too little Eps8 during the later phase of mitosis, the shape of the cell deforms markedly”, continues Dr. Werner. Thus, precise control of Eps8 levels contributes to the structural changes that eukaryotic cells must undergo to distribute the genetic information correctly to the two daughter cells. “Our work once again demonstrates that controlled protein degradation is a critical component in the regulation of cellular processes”, says Prof. Melchior.

The research was conducted within the framework of the DKFZ-ZMBH Alliance, the strategic cooperation between the German Cancer Research Center (DKFZ) and the Center for Molecular Biology of Heidelberg University (ZMBH). Contributors to the project included researchers from the Max Planck Institute for Biophysical Chemistry in Göttingen and the University Medical Center Göttingen, the FIRC Institute of Molecular Oncology (IFOM) in Milan and the University of Milan, and the Howard Hughes Medical Institute – St. Jude Children’s Research Hospital – in Memphis.
Original publication:
A. Werner, A. Disanza, N. Reifenberger, G. Habeck, J. Becker, M. Calabrese, H. Urlaub, H. Lorenz, B. Schulman, G. Scita & F. Melchior: SCF-Fbxw5 mediates transient degradation of actin remodeller Eps8 to allow proper mitotic progression, Nature Cell Biology (published online 13 January 2013), doi:10.1038/ncb2661

Contact:
Prof. Dr. Frauke Melchior
Center for Molecular Biology of Heidelberg University
Phone +49 6221 54-6804
f.melchior@zmbh.uni-heidelberg.de

Communications and Marketing
Press Office, phone +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>