Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell's Recycling Center Implicated in Division Decisions

29.07.2014

Allows cancer cells to divide even when oxygen-starved

Most cells do not divide unless there is enough oxygen present to support their offspring, but certain cancer cells and other cell types circumvent this rule.

Researchers at The Johns Hopkins University have now identified a mechanism that overrides the cells’ warning signals, enabling cancers to continue to divide even without a robust blood supply.

In the process, the researchers found that lysosomes — the cell’s protein “recycling centers” — help govern cell division decisions. They also uncovered new evidence that certain drugs can halt the growth of tumors that have high levels of the protein HIF-1alpha.

A summary of their findings will be published the week of July 28 in the journal PNAS.

Low levels of oxygen stimulate the production and activation of HIF-1alpha, which protects cells in two ways. Primarily, it turns on several genes for proteins that help the cells adapt to the lack of oxygen. It can also stop the duplication of DNA, which prevents cells from dividing and adding more oxygen-using cells to an already harsh environment.

Knowing that some cells ignore the warnings of HIF-1alpha and divide anyway, Gregg Semenza, M.D., Ph.D., and his team looked for interactions between HIF-1alpha and Cdk1 and Cdk2, proteins known to regulate cell division decisions. They found that HIF-1alpha interacts with both of them, but that Cdk1 increases HIF-1alpha levels, while Cdk2 lowers them.

Semenza’s team suspected that Cdk1 and Cdk2 were acting on HIF-1alpha by marking or not marking it for destruction by the cell’s miniature “garbage disposals,” called proteasomes. But when the researchers blocked proteasome function, they found no changes in HIF-1alpha levels.

Instead, Cdk1 and Cdk2 turned out to alter HIF-1alpha levels by marking or not marking it for destruction by the cell’s lysosomes. To their knowledge, this is the first time lysosomes have been implicated in a cell’s division decisions.

Remarkably, in certain cancer cells, Cdk2 was able to decrease levels of HIF-1alpha while also stimulating its gene activation activity. The net effect was that cells continued dividing while coping with low oxygen levels. In cultured cells, drugs that inhibit Cdk1 prevented HIF-1alpha levels from falling and restored its ability to halt cell division, suggesting they may be effective treatments for certain cancers.

Gregg Semenza is the C. Michael Armstrong Professor of Medicine and a professor of pediatrics, oncology, radiation oncology and biological chemistry at the Johns Hopkins University School of Medicine. Other authors of the report include Maimon Hubbi, Daniele Gilkes, Hongxia Hu and Ishrat Ahmed of the Johns Hopkins University School of Medicine; and Kshitiz of Yale University.

This work was supported by grants from the National Cancer Institute (K99CA181352) and the American Cancer Society.

Catherine Kolf | newswise
Further information:
http://www.jhmi.edu

Further reports about: Cancer Cdk1 Division Medicine Recycling Semenza activation destruction divide drugs levels lysosomes proteins

More articles from Life Sciences:

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

nachricht Self-assembled nanostructures hit their target
23.09.2016 | King Abdullah University of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Chains of nanogold – forged with atomic precision

23.09.2016 | Life Sciences

New leukemia treatment offers hope

23.09.2016 | Health and Medicine

Self-assembled nanostructures hit their target

23.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>