Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell phones that protect against deadly chemicals? Why not?

12.04.2010
Crowdsourcing cell phones to detect chemicals

Do you carry a cell phone? Today, chances are it's called a "smartphone" and it came with a three-to-five megapixel lens built-in—not to mention an MP3 player, GPS or even a bar code scanner.

This 'Swiss-Army-knife' trend represents the natural progression of technology—as chips become smaller/more advanced, cell phones absorb new functions.

What if, in the future, new functions on our cell phones could also protect us from toxic chemicals?

Homeland Security's Science and Technology Directorate (S&T)'s Cell-All is such an initiative. Cell-All aims to equip cell phones with a sensor capable of detecting deadly chemicals. The technology is ingenious. A chip costing less than a dollar is embedded in a cell phone and programmed to either alert the cell phone carrier to the presence of toxic chemicals in the air, and/or a central station that can monitor how many alerts in an area are being received. One might be a false positive. Hundreds might indicate the need for evacuation.

"Our goal is to create a lightweight, cost-effective, power-efficient solution," says Stephen Dennis, Cell-All's program manager.

How would this wizardry work? Just as antivirus software bides its time in the background and springs to life when it spies suspicious activity, so Cell-All would regularly sniffs the surrounding air for certain volatile chemical compounds.

When a threat is sensed, an alert ensues in one of two ways. For personal safety issues such as a chlorine gas leak, a warning is sounded; the user can choose a vibration, noise, text message or phone call. For catastrophes such as a sarin gas attack, details—including time, location and the compound—are phoned home to an emergency operations center. While the first warning is beamed to individuals, the second warning works best with crowds. And that's where the genius of Cell-All lies—in crowd sourcing human safety.

Currently, if a person suspects that something is amiss, he might dial 9-1-1, though behavioral science tells us that it's easier to do nothing. And, as is often the case when someone phones in an emergency, the caller may be difficult to understand, diminishing the quality of information that's relayed to first responders. An even worse scenario: the person may not even be aware of the danger, like the South Carolina woman who last year drove into a colorless, odorless, and poisonous ammonia cloud.

In contrast, anywhere a chemical threat breaks out—a mall, a bus, subway or office—Cell-All will alert the authorities automatically. Detection, identification, and notification all take place in less than 60 seconds. Because the data are delivered digitally, Cell-All reduces the chance of human error. And by activating alerts from many people at once, Cell-All cleverly avoids the long-standing problem of false positives. The end result: emergency responders can get to the scene sooner and cover a larger area—essentially anywhere people are, casting a wider net than stationary sensors can.

And the privacy issue? Does this always-on surveillance mean that the government can track your precise whereabouts whenever it wants? To the contrary, Cell-All will operate only on an opt-in basis and will transmit data anonymously.

"Privacy is as important as technology," says Dennis. "After all, for Cell-All to succeed, people must be comfortable enough to turn it on in the first place."

For years, the idea of a handheld weapons of mass destruction detector has engaged engineers. In 2007, S&T called upon the private sector to develop concepts of operations. Today, thanks to increasingly successful prototype demonstrations, the Directorate is actively funding the next step in R&D—a proof of principle—to see if the concept is workable.

To this end, three teams from Qualcomm, the National Aeronautics and Space Administration (NASA), and Rhevision Technology are perfecting their specific area of expertise. Qualcomm engineers specialize in miniaturization and know how to shepherd a product to market. Scientists from the Center for Nanotechnology at NASA's Ames Research Center have experience with chemical sensing on low-powered platforms, such as the International Space Station. And technologists from Rhevision have developed an artificial nose—a piece of porous silicon that changes colors in the presence of certain molecules, which can be read spectrographically.

Similarly, S&T is pursuing what's known as cooperative research and development agreements with four cell phone manufacturers: Qualcomm, LG, Apple and Samsung. These written agreements, which bring together a private company and a government agency for a specific project, often accelerate the commercialization of technology developed for government purposes. As a result, Dennis hopes to have 40 prototypes in about a year, the first of which will sniff out carbon monoxide and fire.

To be sure, Cell-All's commercialization may take several years. Yet the goal seems eminently achievable: Just as Gates once envisioned a computer on every desk in every home, so Dennis envisions a chemical sensor in every cell phone in every pocket, purse or belt holster.

And if it's not already the case, says Dennis, "Our smartphones may soon be smarter than we are."

John Verrico | EurekAlert!
Further information:
http://www.dhs.gov

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>