Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell phones that protect against deadly chemicals? Why not?

12.04.2010
Crowdsourcing cell phones to detect chemicals

Do you carry a cell phone? Today, chances are it's called a "smartphone" and it came with a three-to-five megapixel lens built-in—not to mention an MP3 player, GPS or even a bar code scanner.

This 'Swiss-Army-knife' trend represents the natural progression of technology—as chips become smaller/more advanced, cell phones absorb new functions.

What if, in the future, new functions on our cell phones could also protect us from toxic chemicals?

Homeland Security's Science and Technology Directorate (S&T)'s Cell-All is such an initiative. Cell-All aims to equip cell phones with a sensor capable of detecting deadly chemicals. The technology is ingenious. A chip costing less than a dollar is embedded in a cell phone and programmed to either alert the cell phone carrier to the presence of toxic chemicals in the air, and/or a central station that can monitor how many alerts in an area are being received. One might be a false positive. Hundreds might indicate the need for evacuation.

"Our goal is to create a lightweight, cost-effective, power-efficient solution," says Stephen Dennis, Cell-All's program manager.

How would this wizardry work? Just as antivirus software bides its time in the background and springs to life when it spies suspicious activity, so Cell-All would regularly sniffs the surrounding air for certain volatile chemical compounds.

When a threat is sensed, an alert ensues in one of two ways. For personal safety issues such as a chlorine gas leak, a warning is sounded; the user can choose a vibration, noise, text message or phone call. For catastrophes such as a sarin gas attack, details—including time, location and the compound—are phoned home to an emergency operations center. While the first warning is beamed to individuals, the second warning works best with crowds. And that's where the genius of Cell-All lies—in crowd sourcing human safety.

Currently, if a person suspects that something is amiss, he might dial 9-1-1, though behavioral science tells us that it's easier to do nothing. And, as is often the case when someone phones in an emergency, the caller may be difficult to understand, diminishing the quality of information that's relayed to first responders. An even worse scenario: the person may not even be aware of the danger, like the South Carolina woman who last year drove into a colorless, odorless, and poisonous ammonia cloud.

In contrast, anywhere a chemical threat breaks out—a mall, a bus, subway or office—Cell-All will alert the authorities automatically. Detection, identification, and notification all take place in less than 60 seconds. Because the data are delivered digitally, Cell-All reduces the chance of human error. And by activating alerts from many people at once, Cell-All cleverly avoids the long-standing problem of false positives. The end result: emergency responders can get to the scene sooner and cover a larger area—essentially anywhere people are, casting a wider net than stationary sensors can.

And the privacy issue? Does this always-on surveillance mean that the government can track your precise whereabouts whenever it wants? To the contrary, Cell-All will operate only on an opt-in basis and will transmit data anonymously.

"Privacy is as important as technology," says Dennis. "After all, for Cell-All to succeed, people must be comfortable enough to turn it on in the first place."

For years, the idea of a handheld weapons of mass destruction detector has engaged engineers. In 2007, S&T called upon the private sector to develop concepts of operations. Today, thanks to increasingly successful prototype demonstrations, the Directorate is actively funding the next step in R&D—a proof of principle—to see if the concept is workable.

To this end, three teams from Qualcomm, the National Aeronautics and Space Administration (NASA), and Rhevision Technology are perfecting their specific area of expertise. Qualcomm engineers specialize in miniaturization and know how to shepherd a product to market. Scientists from the Center for Nanotechnology at NASA's Ames Research Center have experience with chemical sensing on low-powered platforms, such as the International Space Station. And technologists from Rhevision have developed an artificial nose—a piece of porous silicon that changes colors in the presence of certain molecules, which can be read spectrographically.

Similarly, S&T is pursuing what's known as cooperative research and development agreements with four cell phone manufacturers: Qualcomm, LG, Apple and Samsung. These written agreements, which bring together a private company and a government agency for a specific project, often accelerate the commercialization of technology developed for government purposes. As a result, Dennis hopes to have 40 prototypes in about a year, the first of which will sniff out carbon monoxide and fire.

To be sure, Cell-All's commercialization may take several years. Yet the goal seems eminently achievable: Just as Gates once envisioned a computer on every desk in every home, so Dennis envisions a chemical sensor in every cell phone in every pocket, purse or belt holster.

And if it's not already the case, says Dennis, "Our smartphones may soon be smarter than we are."

John Verrico | EurekAlert!
Further information:
http://www.dhs.gov

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>