Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell mechanism discovered that may cause pancreatic cancer

28.01.2015

Research points to potential new treatment for hard-to-treat cancers

Researchers at Huntsman Cancer Institute (HCI) at the University of Utah have found that defects in how cells are squeezed out of overcrowded tissue to die, a process called extrusion, may be a mechanism by which pancreatic cancer begins. From these findings, they may have identified an effective way to reverse the defective extrusion's effects without destroying normal tissues nearby. The results were published in the latest edition of the journal eLife.


This is Jody Rosenblatt, Ph.D., , associate professor in the Department of Oncological Sciences at the University of Utah School of Medicine, and an Huntsman Cancer Institute investigator.

Credit: Huntsman Cancer Institute

The study focuses on the epithelia, tissues lining the cavities and surfaces of structures throughout the body, including organs such as the pancreas. It is already well-established that most solid tumors arise from this type of tissue.

The team analyzed previous published microarray data and found that a receptor for the lipid sphingosine 1-phosphate (S1P2) that is critical for the extrusion process, is significantly reduced in the most common type of pancreas cancer known as pancreatic ductal adenocarcinoma (PDAC), lung cancer, and some types of colon cancer--all aggressive cancers that resist treatment with chemotherapy.

Focusing on cells from PDAC tumors, the team found that reduced S1P2 levels led to reduced extrusion and cell death rates. About 50% of the cells did not extrude and formed masses, while most of the remaining ones extruded underneath instead of outside the cell layer.

"This kind of altered extrusion may be a common hallmark of invasive tumor types," said Jody Rosenblatt, PhD, co-author of the study, associate professor in the Department of Oncological Sciences at the University of Utah School of Medicine, and an HCI investigator. "While the mechanisms that drive tumor cell invasion are not yet clear, the results suggest that S1P2-mediated extrusion may play an important role in metastatic cell invasion."

Normally, signaling through S1P2 triggers epithelial cells to squeeze some cells out to die when overcrowding occurs in order to keep constant healthy numbers. "Usually, cells pop out, away from underlying tissue," said Rosenblatt. "Looking at zebrafish, we found that when the S1P2 signal is disrupted, cells build up and form masses that resist cell death--even when it is triggered by chemotherapy--or they pop into underlying tissue where they can potentially invade. Also, some cells die without being extruded, creating poor barrier function in the epithelium, which could cause chronic inflammation."

According to Rosenblatt, decades of previous research has established all these conditions--masses of cells, resistance to cell death, invasive activity, and chronic inflammation--as determining factors of cells becoming tumors and progressing into metastasis.

Normally, extruded cells ultimately die because survival signaling, which depends on a signal called focal adhesion kinase (FAK), is lost. The team tested whether defective extrusion could be bypassed by using inhibitors to FAK. Simply adding FAK inhibitors rescued cell death rates to normal, and surprisingly, eliminated the large cell masses and improved the barrier function.

"Some FAK inhibitors are already being tested in clinical trials for other types of cancers," said Rosenblatt. "Hopefully, they may also be a better therapy for recalcitrant tumors such as pancreas cancers and some lung cancers.

"Our results so far have focused on the primary tumor or cells invading in culture. Now we need to see if we can target cells that have moved to other sites, or metastasized, with FAK inhibitors, since this is an important feature of pancreatic cancer. That's the next phase of our study," said Rosenblatt.

###

Watch a video about the research: https://www.youtube.com/watch?v=BoDrxXHRICw

Yapeng Gu, PhD; Gloria Slattum, PhD; members of HCI's Rosenblatt lab, are co-authors of this article. Other co-authors include Jill Shea, PhD; Matthew Firpo, PhD; and Sean Mulvihill, MD, and Margaret Alexander from the University of Utah, and Vita Golubovskaya, PhD, of Roswell Park Cancer Institute in Buffalo, New York.

This study was supported by a National Institute of Health Director's New Innovator Award 1DP2OD002056-01, as well as R01GM102169 and P30CA042014. The University of Utah provided a Funding Incentive Seed Grant and Huntsman Cancer Foundation also provided research support funding.

About Huntsman Cancer Institute at the University of Utah

Huntsman Cancer Institute (HCI) is one of the world's top academic research and cancer treatment centers. HCI manages the Utah Population Database - the largest genetic database in the world, with more than 16 million records linked to genealogies, health records, and vital statistics. Using this data, HCI researchers have identified cancer-causing genes, including the genes responsible for melanoma, colon and breast cancer, and paraganglioma. HCI is a member of the National Comprehensive Cancer Network (a 23-member alliance of the world's leading cancer centers) and is a National Cancer Institute-Designated Cancer Center. HCI treats patients with all forms of cancer and operates several high-risk clinics that focus on melanoma and breast, colon, and pancreas cancers. The HCI Cancer Learning Center for patient and public education contains one of the nation's largest collections of cancer-related publications. The institute is named after Jon M. Huntsman, Sr., a Utah philanthropist, industrialist, and cancer survivor.

Media Contact

Linda Aagard
801-587-7639

 @UofUHealthCare

http://www.healthcare.utah.edu/publicaffairs/ 

Linda Aagard | EurekAlert!

Further reports about: CANCER HCI Health Sciences cell death death pancreas pancreatic pancreatic cancer tumors

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>