Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell energy sensor mechanism discovered

22.02.2012
Studies linked to better understanding of cancer drugs

Johns Hopkins and National Taiwan University researchers have discovered more details about how an energy sensing "thermostat" protein determines whether cells will store or use their energy reserves.

In a report in the Feb. 9 edition of Nature, the researchers showed that a chemical modification on the thermostat protein changes how it's controlled. Without the modification, cells use stored energy, and with it, they default to stockpiling resources. When cells don't properly allocate their energy supply, they can die off or become cancerous. The Johns Hopkins team focused especially on enzymes that add or remove so-called acetyl groups from protein molecules.

"Understanding how cells are affected by adding acetyl groups to proteins, particularly those involved in energy use, is important because there is increasing use of drugs that block acetyl-removing enzymes for treatment of cancer and neurodegenerative diseases," says Jef Boeke, Ph.D., professor of molecular biology, genetics and oncology, and director of the High Throughput Biology Center at the Johns Hopkins University School of Medicine. "Blocking acetyl-removing enzymes turns on anticancer genes that help fight cancer; however, it is not known what other genes and cellular processes may also be affected by these treatments."

To determine which enzymes remove acetyl chemical groups from which proteins, the researchers engineered human cells with reduced levels of each of 12 enzymes known to remove acetyl chemical groups. In each of these cell lines, they then turned down each of about 20,000 genes and used a DNA "chip" to identify which genes were affected by reduced levels of the acetyl-removing enzymes. The DNA chip highlighted a specific interaction between the thermostat protein, AMP-activated protein kinase (AMPK), and one of the acetyl-removing enzymes, HDAC1.

With less HDAC, AMPK was turned "off," presumably because it retains its acetyl group, the researchers concluded. AMPK acts like an energy thermostat because when energy levels are low in the cell, AMPK kick-starts processes that use the cell's energy reserves and cuts off reactions that store energy. On the other hand, when the cell has plenty of energy, AMPK turns off, causing energy in the form of sugar and fats being stored for later use.

Because the HDAC1 protein turned on AMPK, the researchers presumed there would be a corresponding acetyl-adding enzyme to specifically turn off AMPK. To find this enzyme, they extracted AMPK protein from eight different cell lines, each with reduced levels of a type of acetyl-adding enzyme. They found that AMPK in cells with reduced levels of this acetyl-adding enzyme, called p300, was less acetylated than in cells containing normal amounts of p300.

To confirm the idea that adding or removing acetyl groups directly affects how AMPK controls the way the cell uses energy, they measured the cell's energy stores with the help of a dye that accumulates in the fat globules of a cell. The dye let them estimate the size of fat globules that store energy. The cells unable to add acetyl to AMPK contained less of the dye and therefore smaller fat globules compared to normal human cells. Conversely, the cells unable to remove acetyl groups from AMPK contained more of the dye, indicating bigger fat globules. The research team concluded that when AMPK contains acetyl groups the cell uses less of its energy reserves than when AMPK does not contain acetyl groups.

Boeke says the work on human cells followed similar studies on yeast energy proteins done earlier in his laboratory.

Additional authors of the study include Yu-yi Lin, Shang-Yun Liu and Yi-hsuan Chou of the National Taiwan University; Jin-ying Lu of the National Taiwan University Hospital; Chin Ni Khnor and Chi-Long Lin of Academia Sinica, Taipei, Taiwan; Samara Kiihl and Rafael Irizarry of the Johns Hopkins University Bloomberg School of Public Health; and Yasir Suhail, Zheng Kuang and Joel Bader of the Johns Hopkins University School of Medicine.

The study was supported by funds from National Science Council grants, National Taiwan University Frontier and Innovative Research, National Taiwan University Excellent Translational Medicine Research Project, a National Health Research Institutes Career Development grant, the Liver Disease Prevention and Treatment Research Foundation and a National Institutes of Health Common Fund grant.

Related Stories: Hopkins Scientists Turn on Fountain of Youth in Yeast: http://www.hopkinsmedicine.org/news/media/releases/hopkins_scientists_turn_on

_fountain_of_youth_in_yeast

Jef Boeke of Molecular Biology and Genetics and the HiT Center on microarrays 101 and scientific nomenclature: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/about_us

/scientists/jef_boeke.html

Johns Hopkins Researchers Find Link Between Cell's Energy Use and Genome Health: http://www.hopkinsmedicine.org/Press_releases/2006/07_21a_06.html

On the Web: Jef Boeke's lab: http://www.bs.jhmi.edu/MBG/boekelab/

The High Throughput Biology Center: http://www.hopkinsmedicine.org/institute_basic_biomedical_sciences/research

_centers/high_throughput_biology_hit/

Department of Molecular Biology and Genetics: http://www.mbg.jhmi.edu/Pages/index.aspx

Vanessa McMains | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>