Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From cell division to ageing - scientists locate main cell switches

14.08.2009
Protein function and gene expression are often regulated by reversible modifications of already existing proteins.

Scientists from the Max Planck Institute of Biochemistry and the University of Copenhagen have now been able to prove that the reversible attachment of acetyl groups influences virtually all functions of human cells and therefore has a much greater importance than previously assumed.

Whether it is cell division, signal transduction or ageing - all these processes are affected by acetyl groups acting as molecular switches. Therefore, these switches may prove to be a crucial factor in the development of new therapies against diseases like cancer, Alzheimer's or Parkinson's.

Proteins can be regulated by small modifications that act as molecular switches and turn certain functions on and off. One of these reversible modifications is acetylation: acetyl groups are attached to proteins and can be removed again by certain enzymes, the so-called deacetylases. This process plays a key role in many cellular processes according to the scientists' report published in todays issue of the renowned journal "Science".

Using a specifically developed technology the scientists were able, for the first time, to search for acetylation sites in the whole protein inventory of the cell. All in all, they identified more than 3600 of these switching points in almost 1800 proteins - this proves that acetylation is much more important than previously supposed and that it has broad regulatory functions. "Our results have expanded the number of known acetylation switches by a factor of six, and give us for the first time a comprehensive insight into this type of modification", says professor Matthias Mann, director of the research department "Proteomics and Signal Transduction" at the MPI of Biochemistry.

Previously scientists believed that acetylation was mainly involved in regulation of gene expression. The new study shows that practically all cellular processes are influenced, e.g. cell division, DNA-repair or signal transduction - without acetylation cells could not survive. The significance of this process is highlighted by the example of Cdc28: This protein is necessary for the budding yeast. If the acetyl-switch of Cdc28 is defect, the yeast cell dies.

Defective protein regulation plays a role in the development of numerous diseases, therefore acetylation switches are promising target points for the development of new therapies. Especially in the treatment of cancer there are already successful medications based on the inhibition of deacetylases. Two of these drugs are presently in use against certain types of leukemia.

"Another process that is influenced substantially by acetylation is ageing", explains Chunaram Choudhary, the first author of the study, who is now associate professor at the Novo Nordisk Center for Protein Research at the University of Copenhagen. Therefore manipulation of these molecular switches might also be a valuable tool for the treatment of age-related neurological diseases like Alzheimer's or Parkinson's.

Up to now, knowledge about acetylation in living cells was poor, despite its great biological and clinical significance. Due to their new technology, the scientists are now for the first time able to analyse comprehensively how acetyl-switches respond to drugs - especially with regard to the development of new medications this promises substantial progress.

Original Publication:
C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehmann, T. Walther, J.V. Olsen, M.Mann: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 14 August 2009.
Contact:
Prof. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
ph. ++49/89-8578-2824
ph. ++49/89-8578-3882
E-mail:
konschak@biochem.mpg.de
goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Further information:
http://www.biochem.mpg.de/mann

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>