Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From cell division to ageing - scientists locate main cell switches

14.08.2009
Protein function and gene expression are often regulated by reversible modifications of already existing proteins.

Scientists from the Max Planck Institute of Biochemistry and the University of Copenhagen have now been able to prove that the reversible attachment of acetyl groups influences virtually all functions of human cells and therefore has a much greater importance than previously assumed.

Whether it is cell division, signal transduction or ageing - all these processes are affected by acetyl groups acting as molecular switches. Therefore, these switches may prove to be a crucial factor in the development of new therapies against diseases like cancer, Alzheimer's or Parkinson's.

Proteins can be regulated by small modifications that act as molecular switches and turn certain functions on and off. One of these reversible modifications is acetylation: acetyl groups are attached to proteins and can be removed again by certain enzymes, the so-called deacetylases. This process plays a key role in many cellular processes according to the scientists' report published in todays issue of the renowned journal "Science".

Using a specifically developed technology the scientists were able, for the first time, to search for acetylation sites in the whole protein inventory of the cell. All in all, they identified more than 3600 of these switching points in almost 1800 proteins - this proves that acetylation is much more important than previously supposed and that it has broad regulatory functions. "Our results have expanded the number of known acetylation switches by a factor of six, and give us for the first time a comprehensive insight into this type of modification", says professor Matthias Mann, director of the research department "Proteomics and Signal Transduction" at the MPI of Biochemistry.

Previously scientists believed that acetylation was mainly involved in regulation of gene expression. The new study shows that practically all cellular processes are influenced, e.g. cell division, DNA-repair or signal transduction - without acetylation cells could not survive. The significance of this process is highlighted by the example of Cdc28: This protein is necessary for the budding yeast. If the acetyl-switch of Cdc28 is defect, the yeast cell dies.

Defective protein regulation plays a role in the development of numerous diseases, therefore acetylation switches are promising target points for the development of new therapies. Especially in the treatment of cancer there are already successful medications based on the inhibition of deacetylases. Two of these drugs are presently in use against certain types of leukemia.

"Another process that is influenced substantially by acetylation is ageing", explains Chunaram Choudhary, the first author of the study, who is now associate professor at the Novo Nordisk Center for Protein Research at the University of Copenhagen. Therefore manipulation of these molecular switches might also be a valuable tool for the treatment of age-related neurological diseases like Alzheimer's or Parkinson's.

Up to now, knowledge about acetylation in living cells was poor, despite its great biological and clinical significance. Due to their new technology, the scientists are now for the first time able to analyse comprehensively how acetyl-switches respond to drugs - especially with regard to the development of new medications this promises substantial progress.

Original Publication:
C. Choudhary, C. Kumar, F. Gnad, M.L. Nielsen, M. Rehmann, T. Walther, J.V. Olsen, M.Mann: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science, 14 August 2009.
Contact:
Prof. Matthias Mann
Proteomics and Signal Transduction
Max Planck Institute of Biochemistry
Am Klopferspitz 18
82152 Martinsried
mmann@biochem.mpg.de
Anja Konschak
Dr. Monika Gödde
Public Relations
Max Planck Institute of Biochemistry
An Klopferspitz 18
82152 Martinsried
ph. ++49/89-8578-2824
ph. ++49/89-8578-3882
E-mail:
konschak@biochem.mpg.de
goedde@biochem.mpg.de

Dr. Monika Gödde | idw
Further information:
http://www.biochem.mpg.de/mann

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>