Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What causes cell defences to crumble? - Researchers identify proteins in mussels that act as a barrier to chemicals

09.10.2008
Cells have mechanisms that allow them to deal with harmful substances and to survive.

One such protective mechanism consists of transport proteins in the cell membrane that act as molecular 'pumps', preventing toxic compounds from accumulating in the cell. This defence mechanism against toxic chemicals is called multi-xenobiotic resistance (MXR). Substances that inhibit the MXR mechanism are called chemosensitizers.

The two recently discovered proteins are both ABC transporters. This class of membrane proteins takes its name from a shared structural element: the ATP-binding cassette (ABC). ABC transporters are one of the largest known families of proteins that occur in organisms ranging from bacteria to mammals.

Similar proteins are involved in the blood-brain barrier in humans, where they prevent harmful substances from entering the sensitive nerve tissue. In mussels and other aquatic organisms this barrier does not divide different parts of the same organism, but forms a barrier towards the outside - an 'environment-tissue barrier'.

"The proteins are in the cell membrane and ensure that substances that do not belong in the cell are transported out again - like a bilge pump that pumps water out of a ship," explains Dr Till Luckenbach of the UFZ.

Possible effects of environmental chemicals on the MXR system were first described nearly 20 years ago. But it is only in recent years that scientists have begun investigating such effects in more detail. "We want to understand the system to find out how chemicals interact with these transporters," says Luckenbach, who began researching mussels at Stanford University's Hopkins Marine Station in California and is continuing his research using fish and mammalian cells in Leipzig at the Helmholtz Centre for Environmental Research.

"So far, comparatively little is known about environment-related substances that trigger this chemical sensitization by blocking the MXR system.

However, the known substances belong to very different chemical groups. This could be an indication that interactions between environmental substances and the system are widespread."

Until now, the chemicals authorisation procedure has been looking at associated risks, such as toxicity and mutagenic or carcinogenic effects. The sensitization effect of certain substances with regard to other chemicals - referred to as the chemosensitization effect by scientists – does not play a role in the current legislation. However, Till Luckenbach and his colleagues are convinced that these substances have a major impact on the environment and that it is important to find out more about these processes.

Publications:
Luckenbach, T., Epel, D., (2008):
ABCB and ABCC type transporters confer multixenobiotic resistance and form an environment-tissue barrier in bivalve gills. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 294(6):R1919-29.
doi:10.1152/ajpregu.00563.2007
http://ajpregu.physiology.org/cgi/content/abstract/294/6/R1919
This publication was supported in part by the Deutsche Forschungsgemeinschaft (DFG), the National Sea Grant College Program of the US Department of Commerce (National Oceanic and Atmospheric Administration) and the California State Resources Agency.
Epel D., Luckenbach T., Stevenson C.N., MacManus-Spencer L.A., Hamdoun A., Smital T., (2008):
Efflux transporters: newly appreciated roles in protection against pollutants. Environmental Science & Technology, 42(11):3914-3920.
http://pubs.acs.org/subscribe/journals/esthag/42/i11/html/
060108feature_epel.html
Support for this work came from National Science Foundation (NSF), the German Research Council and others.
More Informations:
Dr. Till Luckenbach
Helmholtz Centre for Environmental Research (UFZ)
Telephone: +49-341-235-1514
und
Prof. David Epel
Hopkins Marine Station, Stanford University Tel. +1-(831) 655-6226
or from
Tilo Arnhold (UFZ press office)
Telephone: +49 (0)341 235 1269
Email: presse@ufz.de
Links:
Department of Cell Toxicology:
http://www.ufz.de/index.php?en=2821
Hopkins Marine Station of Stanford University http://www-marine.stanford.edu/ http://www.stanford.edu/~depel/ National Sea Grant College Program:

http://www.seagrant.noaa.gov/

At the Helmholtz Centre for Environmental Research (UFZ) scientists research the causes and consequences of far-reaching environmental changes. They study water resources, biological diversity, the consequences of climate change and adaptation possibilities, environmental and biotechnologies, bio energy, the behaviour of chemicals in the environment and their effect on health, as well as modelling and social science issues. Their guiding research principle is supporting the sustainable use of natural resources and helping to secure these basic requirements of life over the long term under the influence of global change. The UFZ employs 900 people at its sites in Leipzig, Halle and Magdeburg. It is funded by the German government and by the states of Saxony and Saxony-Anhalt.

The Helmholtz Association helps solve major, pressing challenges facing society, science and the economy with top scientific achievements in six research areas: Energy, Earth and Environment, Health, Key Technologies, Structure of Matter, Transport and Space. With 25,700 employees in 15 research centres and an annual budget of around EUR 2.3 billion, the Helmholtz Association is Germanys largest scientific organisation. Its work follows in the tradition of the great natural scientist Hermann von Helmholtz (1821-1894).

Tilo Arnhold | UFZ Leipzig-Halle
Further information:
http://www.ufz.de/index.php?en=17251
http://www.ufz.de/index.php?en=15560
http://www-marine.stanford.edu/epel.htm

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>