Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell death pathway linked to mitochondrial fusion

25.01.2011
New research led by UC Davis scientists provides insight into why some body organs are more susceptible to cell death than others and could eventually lead to advances in treating or preventing heart attack or stroke.

In a paper published Jan. 21 in the journal Molecular Cell, the UC Davis team and their collaborators at the National Institutes of Health and Johns Hopkins University report that Bax, a factor known to promote cell death, is also involved in regulating the behavior of mitochondria, the structures that provide energy inside living cells.

Mitochondria constantly split and fuse. The proteins that control the splitting of mitochondria also promote a process called apoptosis, or programmed cell death. In contrast, the proteins that control mitochondrial fusion help protect against cell death. Cell death can happen when cells are starved of oxygen, for example during a heart attack or stroke.

Yeast have a single protein that controls outer membrane fusion, but both human and mouse cells have two proteins, called MFN1 and MFN2, which control outer membrane fusion. Using mitochondria from cells derived from genetically modified "knockout" mice, Suzanne Hoppins, a postdoctoral researcher at UC Davis, and Jodi Nunnari, a professor of molecular cell biology, studied how these two proteins work together and the role specific genes play in that process.

The research team discovered that these proteins combine with themselves or each other to form a tether between two mitochondria, leading to fusion. All three combinations -- MFN1/MFN1, MFN1/MFN2 and MFN2/MFN2 -- can promote membrane fusion, but the combination of MFN1/MFN2 is by far the most efficient, Hoppins said.

Hoppins also found that a soluble form of Bax, a protein that triggers apoptosis, can also stimulate mitochondria to fuse. It acts only through the MFN2/MFN2 combination, she found.

The form of Bax that promotes mitochondrial fusion is different from the type that leads to cell death, Nunnari said. Bax leads to cell death when it inserts itself in the mitochondrial membrane. In its soluble, free-floating form, it causes mitochondria to fuse instead.

MFN1 and MFN2 are found in different amounts in different body organs. MFN2 is more abundant in the brain and heart -- tissues where cell death can have disastrous consequences.

The paper shows how MFN2 could act to protect the brain or heart from cell death, by using Bax in a different form, Nunnari said.

"This shows that the fusion machine is both positively and negatively regulated in cells and opens doors to finding the regulatory mechanisms and discovering ways to increase or decrease the sensitivity of cells to apoptosis," Hoppins said. That could lead to new drugs that save cells, for heart disease and stroke, or that kill cells, for cancer.

Co-authors of the study are UC Davis graduate student Megan Cleland; UC Davis postdoctoral researchers Frank Edlich and Soojay Banerjee; and Richard Youle, a senior investigator at the National Institute for Neurological Disorders and Stroke; and J. Michael McCaffery, a professor at Johns Hopkins University.

The research was supported by grants from the National Institutes of Health. Hoppins recently received a K99 "Young Investigator" award from the NIH.

Media contact(s):
Jodi Nunnari, Molecular and Cellular Biology, (530) 754-9774, jmnunnari@ucdavis.edu

Andy Fell, UC Davis News Service, (530) 752-4533, ahfell@ucdavis.edu

Andy Fell | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>