Cell death occurs in the same way in plants, animals, and humans

Now an international constellation of research teams, including one at the Swedish University of Agricultural Sciences, has shown that parts of the genetic programs that determine programmed cell death in plants and animals are actually evolutionarily related and moreover function in a similar way. The findings were published in Nature Cell Biology October 11.

For plants and animals, and for humans as well, it is important that cells both can develop and die under controlled forms. The process where cells die under such forms is called programmed cell death. Disruptions of this process can lead to various diseases such as cancer, when too few cells die, or neurological disorders such as Parkinson's, when too many cell die.

The findings are published jointly by research teams at SLU (Swedish University of Agricultural Sciences) and the Karolinska Institute, the universities of Durham (UK), Tampere (Finland), and Malaga (Spain) under the direction of Peter Bozhkov, who works at SLU in Uppsala, Sweden. The research findings are published in the prestigious scientific journal Nature Cell Biology. The scientists have performed comparative studies of an evolutionarily conserved protein called TUDOR-SN in cell lines from mice and humans and in the plants norway spruce and mouse-ear cress. In both plant and animal cells that undergo programmed cell death, TUDOR-SN is degraded by specific proteins, so-called proteases.

The proteases in animal cells belong to a family of proteins called caspases, which are enzymes. Plants do not have caspases – instead TUDOR-SN is broken down by so-called meta-caspases, which are assumed to be ancestral to the caspases found in animal cells. For the first time, these scientists have been able to demonstrate that a protein, TUDOR-SN, is degraded by similar proteases in both plant and animal cells and that the cleavage of TUDOR-SN abrogate its pro-survival function. The scientists have thereby discovered a further connection between the plant and animal kingdoms. The results now in print will therefore play a major role in future studies of this important protein family.

Cells that lack TUDOR-SN often experience premature programmed cell death. Furthermore, functional studies at the organism level in the model plant mouse-ear cress show that TUDOR-SN is necessary for the development of embryos and pollen. The researchers interpret the results to mean that TUDOR-SN is important in preventing programmed cell death from being activated in cells that are to remain alive.

The research teams maintain that the findings indicate that programmed cell death was established early on in evolution, even before the line that led to the earth's multicellular organisms divided into plants and animals. The work also shows the importance of comparative studies across different species to enhance our understanding of how fundamental mechanisms function at the cellular level in both the plant and animal kingdoms, and by extension in humans.

Title of the scientific work published in Nature Cell Biology:
Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome.

Published in Nature Cell Biology; DOI 10.1038/ncb1979

More information:
Lead author: Associate Professor Peter V. Bozhkov,
Department of Plant Biology and Forest Genetics, SLU Uppsala
e-mail Peter.Bozhkov@vbsg.slu.se
Phone: +46 (0)18 67 32 28, cell phone +46 (0)73 598 30 89
Alternative contact (SLU): Associate Professor Jens Sundström
Department of Plant Biology and Forest Genetics, SLU Uppsala
e-mail Jens.Sundstrom@vbsg.slu.se
Phone: +46 (0)18 67 32 47, cell phone +46 (0)76 793 36 64
Alternative contact (KI): Professor Boris Zhivotovsky
Institute of Environmental Medicine (IMM), Karolinska Institute
e-mail Boris.Zhivotovsky@ki.se
Phone: +46 (0)8-524 875 88
Pressofficer Mikael Propst, +46-70-371 03 53; Mikael.Propst@adm.slu.se

Media Contact

Mikael Propst idw

More Information:

http://www.slu.se

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors