Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell Death: How a Protein Drives Immune Cells to Suicide

15.07.2016

For some pathogens, attack is the best form of defense – they enter immune cells of the human body. However, if they are detected in their hidden niche, the infected cell kills itself to re-expose the pathogens. In the “EMBO Journal” a research group at the University of Basel’s Biozentrum has reported that a protein called gasdermin forms permeable pores in the cell membrane and thus triggers the suicide of the immune cell.

The best hiding place often lies behind enemy lines, as many bacteria such as the pathogens responsible for tuberculosis or typhoid have realized. They invade immune cells and can survive there, well hidden, for some time. To eliminate such invaders, the host macrophages can initiate a suicide program.


Mechanism of pore formation by the protein gasdermin D, resulting in cell death.

University of Basel, Biozentrum


Atomic force microscopy image of the pore.

University of Basel, Biozentrum

Together with researchers at the Novartis Institute for Biomedical Research and ETH Zurich, the team led by Prof. Sebastian Hiller from the Biozentrum at the University of Basel has shown for the first time that a “death protein” perforates the cell membrane, resulting in macrophage bursting open. The re-exposed pathogens can then again be fought by the immune system.

Gasdermin D: Executioner in the cell

Tiny cell components of invading pathogens are recognized by receptors inside macrophages. These, in turn, activate a signaling cascade, which triggers an inflammatory response and initiates pyroptosis – a specific form of programmed cell death.

“Some studies have already demonstrated that the protein gasdermin D plays a central role in pyroptosis,” explains Prof. Petr Broz, one of the main authors of the study. “We have now discovered how gasdermin drives immune cells to suicide and using cryo-electron and atomic force microscopy we could visualize the pores in the cell membrane.”

The protein gasdermin D is at the end of a long signaling pathway. Intracellular receptors recognizing foreign bacterial components induce the assembly of the inflammasome. This protein complex, in turn, activates enzymes that generate active gasdermin fragments by proteolytic cleavage.

“In the macrophages, gasdermin D is the executioner, which carries out the death sentence,” says Hiller, clarifying the role of the protein. “The cleaved gasdermin D fragments rapidly target the cell membrane of macrophages and permeabilize it by forming a pore. The porous membrane leads to cell swelling and bursting.”

Gasdermins cooperate in cell suicide

With gasdermin D, the researchers have not only identified the protein that deals a deathblow to immune cells, but they could also visualize pore formation using high-resolution microscopy techniques. As it turns out, following the cleavage of gasdermin D only one of the two fragments is required for the seamless integration into the cell membrane.

So far, only little is known about the gasdermin family of proteins, which along with gasdermin D includes five other members. In the future, Hiller’s team aims to investigate the structure and function of several gasdermins to determine whether and how they cooperate in pore formation and to identify the physiological context in which these proteins induce pyroptotic cell death.

Original source

Lorenzo Sborgi, Sebastian Rühl, Estefania Mulvihill, Joka Pipercevic, Rosalie Heilig, Henning Stahlberg, Christopher J. Farady, Daniel J. Müller, Petr Broz and Sebastian Hiller
GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death
EMBO Journal; published online 14 July 2016, doi: 10.15252/embj.201694696

Further information

Prof. Sebastian Hiller, University of Basel, Biozentrum, tel. +41 61 267 20 82, email: sebastian.hiller@unibas.ch

Dr. Katrin Bühler, University of Basel, Communications Biozentrum, Tel. +41 61 267 09 74, email: katrin.buehler@unibas.ch

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

Further reports about: Cell cell death cell membrane immune cells macrophages pathogens proteins

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>