Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell contents may be key to controlling toxicity of Huntington's disease protein

06.06.2012
New research into the cell-damaging effects of Huntington's disease suggests a potentially new approach for identifying possible therapeutic targets for treating the nerve-destroying disorder.

Huntington's disease causes the progressive breakdown of nerve cells in the brain and affects an individual's movement, cognition and mental state. Genetically, the disease is associated with a mutation in the Huntingtin gene that causes the huntingtin protein to be produced with an extended region containing the amino acid glutamine.


This is an image showing sequestration of the prion form of translation release factor Sup35 (red) by polyglutamines in an aggresome (green). A new study found that aggresome formation in yeast cells containing Sup35 did not reduce the toxicity of huntingtin proteins with a polyglutamine tract. The study suggests a potentially new approach for identifying possible therapeutic targets for treating Huntington’s disease. Credit: Georgia Tech/Yury Chernoff

The mechanisms that control the severity and onset of the disease are poorly understood, as individuals with the same amount of expansion in their huntingtin proteins experience differences in toxicity and onset of the disease.

A new study led by Georgia Institute of Technology researchers suggests that the toxic effects of the huntingtin protein on cells may not be driven exclusively by the length of the protein's expansion, but also by which other proteins are present in the cell.

The researchers placed human huntingtin protein with an expanded region, called a polyglutamine tract, into yeast cells and found toxicity differences that were based on the other protein aggregates -- called prions -- present in the cells.

"This study clarifies genetic and epigenetic mechanisms that modulate polyglutamine's toxicity on cells and establishes a new approach for identifying potential therapeutic targets through characterization of pre-existing proteins in the cell," said Yury Chernoff, a professor in the School of Biology at Georgia Tech. "While this study was conducted in yeast, it is possible that there are differences in aggregated proteins present in human cells as well, which are causing variation in huntingtin toxicity among individuals."

The results of the study were published in the April 2012 issue of the journal PLoS Genetics. This work was supported by the National Institutes of Health and the Hereditary Disease Foundation.

Also contributing to this research were former Georgia Tech graduate student He Gong and postdoctoral fellow Nina Romanova, University of North Carolina at Chapel Hill School of Medicine research assistant professor Piotr Mieczkowski, and Boston University School of Medicine professor Michael Sherman.

Expanded huntingtin forms clumps in human cells that are typically transported and stored in an internal compartment called an aggresome until they can be removed from the body. While the compartment is thought to protect the contents of the cell from the toxic contents inside the aggresome, the current study shows that huntingtin molecules inside an aggresome can still be toxic to the cell.

In the study, aggresome formation in the cells containing the prion form of the Rnq1 protein reduced the toxicity of the huntingtin protein in Saccharomyces cerevisiae yeast cells, whereas the huntingtin protein's toxicity remained in the presence of the prion form of translation release factor Sup35.

"It remains uncertain whether the toxicity was primarily driven by sequestration of Sup35 into the aggresome or by its sequestration into the smaller huntingtin protein aggregates that remained in the cytoplasm," explained Chernoff, who is also director of the Center for Nanobiology of the Macromolecular Assembly Disorders (NanoMAD). "While Sup35 was detected in the aggresome, we don't know if the functional fraction of Sup35 was sequestered there."

In a follow-on experiment, the researchers increased the level of another release factor, Sup45, in the presence of Sup35 and found that this combination counteracted the toxicity.

"While the Rnq1 and Sup35 prions did not cause significant toxicity on their own, the results show that prion composition in the cell drove toxicity," noted Chernoff. "Prions modulated which proteins were sequestered by the aggresome, as proteins associated with the pre-existing prions were more likely to be sequestered, such as Sup45 because of its association with Sup35."

It remains unknown if polyglutamines can sequester the human versions of the Sup35 and Sup45 release factors, but this study shows the possibility that organisms may differ by the protein composition in their cells, and this in turn may influence their susceptibility to polyglutamine disorders such as Huntington's disease.

Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health (NIH) under award numbers GM058763, GM093294 and GM086890. The content is solely the responsibility of the principal investigators and does not necessarily represent the official views of the NIH.

Abby Robinson | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>