Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell-Building Discovery Could Reduce Need for Some Animal Research

Brown University biomedical engineers can now grow and assemble living microtissues into complex three-dimensional structures in a way that will advance the field of tissue engineering and may eventually reduce the need for certain kinds of animal research.

The team, led by Brown professor Jeffrey Morgan, successfully used clusters of cells grown in a 3-D Petri dish also invented by the group, in order to build microtissues of more complex shapes.

Such a finding, detailed in the March 1 issue of Biotechnology and Bioengineering and posted at the end of January on the journal’s Web site, has enormous implications for basic cell biology, drug discovery and tissue research, Morgan said.

Because the tissues Morgan’s team created in the lab are more like natural tissue, they can be constructed to have complex lace-like patterns similar to a vasculature, the arrangement of blood vessels in the body or in an organ. Morgan said that added complexity could eventually reduce the need to use animals in certain kinds of research. The National Science Foundation and the International Foundation for Ethical Research funded the study, with the latter group’s mission focused in part on reducing the use of animals in research.

“There is a need for … tissue models that more closely mimic natural tissue already inside the body in terms of function and architecture,” said Morgan, a Brown professor of medical science and engineering. “This shows we can control the size, shape and position of cells within these 3-D structures.”

But Morgan said the finding also makes an important contribution to the field of tissue engineering and regenerative medicine.

“We think this is one step toward using building blocks to build complex-shaped tissues that might one day be transplanted,” he said.

The new finding builds on earlier work by Morgan and a team of Brown students, which appeared in September 2007 in the journal Tissue Engineering. The earlier study highlighted the invention of a 3-D Petri dish about the size of a peanut-butter cup and made of agarose, a complex carbohydrate derived from seaweed with the consistency of Jell-O. Morgan and students in his lab developed the dish, creating a product where cells do not stick to the surface. Instead, the cells self-assemble naturally and form “microtissues.”

For the new research, Morgan, with students including Adam Rago and Dylan Dean, made 3-D microtissues in one 3-D Petri dish, harvested these living building blocks and then added them to more complex 3-D molds shaped either like a honeycomb, with holes, or a donut with a hole in the middle.

Those skin cells fused with liver cells in the more complex molds and formed even larger microstructures. Researchers found that the molds helped control the shape of the final microtissue.

They also found that they could control the rate of fusion of the cells by aging them for a longer or shorter time before they were harvested. The longer the wait, Morgan found, the slower the process.

Rago has since graduated from Brown, and Dean, an M.D.-Ph.D. student, has moved on from the Morgan lab to pursue his surgical rotations.

Mark Hollmer | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Biologists unravel another mystery of what makes DNA go 'loopy'
16.03.2018 | Emory Health Sciences

nachricht Scientists map the portal to the cell's nucleus
16.03.2018 | Rockefeller University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>