Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell binding discovery brings hope to those with skin and heart problems

21.01.2011
A University of Manchester scientist has revealed the mechanism that binds skin cells tightly together, which he believes will lead to new treatments for painful and debilitating skin diseases and also lethal heart defects.

Professor David Garrod, in the Faculty of Life Sciences, has found that the glue molecules bind only to similar glue molecules on other cells, making a very tough, resilient structure. Further investigation on why the molecules bind so specifically could lead to the development of clinical applications.

Professor Garrod, whose Medical Research Council-funded work is paper of the week in the Journal of Biological Chemistry (JBC) tomorrow (Friday), said: "Our skin is made up of three different layers, the outermost of which is the epidermis. This layer is only about 1/10th of a millimetre thick yet it is tough enough to protect us from the outside environment and withstand the wear and tear of everyday life.

"One reason our epidermis can do this is because its cells are very strongly bound together by tiny structures called desmosomes, sometimes likened to rivets. We know that people who have defects in their desmosomes have problems with their epidermis and get extremely unpleasant skin diseases. Understanding how desmosomes function is essential for developing better treatments for these and other types of skin disease and for non-healing wounds.

"Desmosomes are also extremely important in locking together the muscle cells of the heart, and hearts where desmosomes are defective can fail catastrophically, causing sudden death in young people.

Hence our findings may also be relevant in the heart and in developing new treatments for heart disease."

ProfessorGarrod and his team, Zhuxiang Nie, Anita Merritt, Mansour Rouhi and Lydia Tabernero, used chemical cross-linking to study cells of the epidermis and found what they believe to be the principal mechanism by which the glue molecules of desmosomes of skin cells bind to each other.

"For reasons that we do not fully understand there are several different but closely-related glue molecules within each desmosome," he explained.

"Our results show that each glue molecule on one cell binds primarily to another of the same type on the neighbouring cell, meaning the binding is highly specific. This was very surprising because previous studies using different techniques had not been able to give such a clear answer on the specificity of binding."

He added: "Our result suggests that this type of specific binding is of fundamental importance in locking together cells of the epidermis into a tough, resilient structure. It is an important step forward in our research, which aims to develop better treatments for non-healing wounds, other skin diseases and heart problems. We could do this if we understood how to make medicines that would lock or unlock the desmosomes as required."

Aeron Haworth | EurekAlert!
Further information:
http://www.manchester.ac.uk

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

New research identifies how 3-D printed metals can be both strong and ductile

11.12.2017 | Physics and Astronomy

Scientists channel graphene to understand filtration and ion transport into cells

11.12.2017 | Materials Sciences

What makes corals sick?

11.12.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>