Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell binding discovery brings hope to those with skin and heart problems

A University of Manchester scientist has revealed the mechanism that binds skin cells tightly together, which he believes will lead to new treatments for painful and debilitating skin diseases and also lethal heart defects.

Professor David Garrod, in the Faculty of Life Sciences, has found that the glue molecules bind only to similar glue molecules on other cells, making a very tough, resilient structure. Further investigation on why the molecules bind so specifically could lead to the development of clinical applications.

Professor Garrod, whose Medical Research Council-funded work is paper of the week in the Journal of Biological Chemistry (JBC) tomorrow (Friday), said: "Our skin is made up of three different layers, the outermost of which is the epidermis. This layer is only about 1/10th of a millimetre thick yet it is tough enough to protect us from the outside environment and withstand the wear and tear of everyday life.

"One reason our epidermis can do this is because its cells are very strongly bound together by tiny structures called desmosomes, sometimes likened to rivets. We know that people who have defects in their desmosomes have problems with their epidermis and get extremely unpleasant skin diseases. Understanding how desmosomes function is essential for developing better treatments for these and other types of skin disease and for non-healing wounds.

"Desmosomes are also extremely important in locking together the muscle cells of the heart, and hearts where desmosomes are defective can fail catastrophically, causing sudden death in young people.

Hence our findings may also be relevant in the heart and in developing new treatments for heart disease."

ProfessorGarrod and his team, Zhuxiang Nie, Anita Merritt, Mansour Rouhi and Lydia Tabernero, used chemical cross-linking to study cells of the epidermis and found what they believe to be the principal mechanism by which the glue molecules of desmosomes of skin cells bind to each other.

"For reasons that we do not fully understand there are several different but closely-related glue molecules within each desmosome," he explained.

"Our results show that each glue molecule on one cell binds primarily to another of the same type on the neighbouring cell, meaning the binding is highly specific. This was very surprising because previous studies using different techniques had not been able to give such a clear answer on the specificity of binding."

He added: "Our result suggests that this type of specific binding is of fundamental importance in locking together cells of the epidermis into a tough, resilient structure. It is an important step forward in our research, which aims to develop better treatments for non-healing wounds, other skin diseases and heart problems. We could do this if we understood how to make medicines that would lock or unlock the desmosomes as required."

Aeron Haworth | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht The gene of autumn colours
27.10.2016 | Hokkaido University

nachricht Polymer scaffolds build a better pill to swallow
27.10.2016 | The Agency for Science, Technology and Research (A*STAR)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>