Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Cell-based alternative to animal testing

European legislation restricts animal testing within the pharmaceutical and cosmetic industries and companies are increasingly looking at alternative systems to ensure that their products are safe to use.

Research published in BioMed Central's open access journal BMC Genomics demonstrates that the response of laboratory grown human cells can now be used to classify chemicals as sensitizing, or non-sensitizing, and can even predict the strength of allergic response, so providing an alternative to animal testing.

Allergic contact dermatitis can result in itching and eczema and is often due to repeated exposure to chemicals at work or in everyday life such as machine oil, detergents, soaps, and cosmetics. Unless the source of the sensitizing chemical is found the resulting rashes can be an ongoing source of misery for the sufferer. The 2009, 7th Amendment to the Cosmetic Directive bans testing of cosmetic products and ingredients on animals meaning that there is currently no way of ensuring new products are hypoallergenic.

Researchers from Lund University in Sweden used genome-wide profiling to measure the response of a human myeloid leukemia cell line to known chemicals. From this they defined a 'biomarker signature' of 200 genes, which could accurately discriminate between sensitizing and non-sensitizing chemicals. By comparing this signature with the known action of these chemicals they were also able to use this system to predict sensitizing potency.

Prof Borrebaeck said, "REACH (Registration, Evaluation, and Authorization of Chemicals) regulation requires that all new and existing chemicals within the European Union are tested for safety. The number of chemicals this includes is over 30,000 and is increasing all the time. Our lab-based alternative to animal testing, although in an early stage of production, is faster, out-performs present alternatives, and, because the cells are human in origin, is more relevant. It provides a way of ensuring the continued safety of consumers and users and, by identifying chemicals and products with low immunogenicity, reducing the suffering due to eczema."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Notes to Editors
1. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests
Henrik Johansson, Malin Lindstedt, Ann-Sofie Albrekt and Carl AK Borrebaeck
BMC Genomics, (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at on the day of publication.

2. BMC Genomics - is an Open Access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.

3. BioMed Central ( is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector

Dr. Hilary Glover | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Inflammation Triggers Unsustainable Immune Response to Chronic Viral Infection

24.10.2016 | Health and Medicine

Microbe hunters discover long-sought-after iron-munching microbe

24.10.2016 | Life Sciences

Seeking balanced networks: how neurons adjust their proteins during homeostatic scaling.

24.10.2016 | Life Sciences

More VideoLinks >>>