Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cell-based alternative to animal testing

08.08.2011
European legislation restricts animal testing within the pharmaceutical and cosmetic industries and companies are increasingly looking at alternative systems to ensure that their products are safe to use.

Research published in BioMed Central's open access journal BMC Genomics demonstrates that the response of laboratory grown human cells can now be used to classify chemicals as sensitizing, or non-sensitizing, and can even predict the strength of allergic response, so providing an alternative to animal testing.

Allergic contact dermatitis can result in itching and eczema and is often due to repeated exposure to chemicals at work or in everyday life such as machine oil, detergents, soaps, and cosmetics. Unless the source of the sensitizing chemical is found the resulting rashes can be an ongoing source of misery for the sufferer. The 2009, 7th Amendment to the Cosmetic Directive bans testing of cosmetic products and ingredients on animals meaning that there is currently no way of ensuring new products are hypoallergenic.

Researchers from Lund University in Sweden used genome-wide profiling to measure the response of a human myeloid leukemia cell line to known chemicals. From this they defined a 'biomarker signature' of 200 genes, which could accurately discriminate between sensitizing and non-sensitizing chemicals. By comparing this signature with the known action of these chemicals they were also able to use this system to predict sensitizing potency.

Prof Borrebaeck said, "REACH (Registration, Evaluation, and Authorization of Chemicals) regulation requires that all new and existing chemicals within the European Union are tested for safety. The number of chemicals this includes is over 30,000 and is increasing all the time. Our lab-based alternative to animal testing, although in an early stage of production, is faster, out-performs present alternatives, and, because the cells are human in origin, is more relevant. It provides a way of ensuring the continued safety of consumers and users and, by identifying chemicals and products with low immunogenicity, reducing the suffering due to eczema."

Media Contact
Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: +44 (0) 20 3192 2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. A genomic biomarker signature can predict skin sensitizers using a cell-based in vitro alternative to animal tests
Henrik Johansson, Malin Lindstedt, Ann-Sofie Albrekt and Carl AK Borrebaeck
BMC Genomics, (in press)
Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Genomics - is an Open Access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector

Dr. Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>