Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai Scientists Discover How a Molecular Receptor on White Blood Cells Identifies Invading Fungi

29.04.2011
Scientists at Cedars-Sinai Medical Center have discovered how a molecular receptor on the surface of white blood cells identifies when invading fungi have established direct contact with the cell surface and pose an infectious threat.

The receptor called Dectin-1, studied in the laboratory of David Underhill, PhD, an associate professor in Cedars-Sinai’s Inflammatory Bowel and Immunobiology Research Institute, detects fungi and instructs white blood cells whether to expend the energy needed to devour the invading pathogens. The findings are featured as the cover story in the April 28 edition of Nature.

Although scientists long have theorized how immune cells recognize microbial debris sloughed from invading organisms at some distance from themselves, this study establishes a model to explain how immune cells determine when pathogens are directly in contact with their surface and thus pose a significantly greater risk, demanding rapid destruction.

The study is important because it moves scientists one step closer to understanding the mysteries of how our bodies mount an immune response to fight disease.

In early stages of infection, white blood cells patrol the body looking for invading pathogens. Dectin-1, a receptor on the surface of white blood cells, recognizes specific components of fungal cell walls, and alerts or “switches on” the immune cells to prepare to fight the infection.

“Our lab has been studying Dectin-1, which directs white blood cells to eat and kill the fungi that they encounter directly, but to ignore soluble material sloughed off of the fungal surface which does not pose an immediate threat,” said Helen Goodridge, PhD, first author on the study and a researcher in the laboratory headed by Underhill. “This is important because phagocytosis and anti-microbial defense responses are energy-intensive and destructive, and should only be used when absolutely necessary.”

During phagocytosis, a white blood cell encounters a microbe, engulfs it, and eats it. Once inside the cell, the microbe can be killed using a combination of degradative enzymes, highly reactive chemicals, and an acidic environment.

A molecular structure that the Underhill lab calls a “phagocytic synapse” forms at the surface of the white blood cell when Dectin-1 detects fungi. As a phagocytic synapse forms, two inhibitory proteins that block transmission of signals inside the white blood cell are pushed aside. This allows Dectin-1 to instruct the cell to respond. The phagocytic synapse does not form when Dectin-1 encounters soluble fungal debris, so the white blood cell does not respond.

“The phagocytic synapse resembles another molecular structure, the ‘immunological synapse.’ It is critical at later stages of an immune response,” said Underhill. “It appears that the phagocytic synapse may be an evolutionary precursor of the immunological synapse.”

The study was funded by the National Institutes of Health, the American Heart Association, and the Crohn’s and Colitis Foundation of America. Underhill, who also directs the PhD Program in Biomedical Sciences and Translational Medicine at Cedars-Sinai, is the Medical Center’s Janis and William Wetsman Family Chair in Inflammatory Bowel Disease Research.

Nationally known for its high quality patient care, the Cedars-Sinai Health System includes a major research enterprise and ranks among the top 10 independent medical centers in terms of NIH research funding. With more than 850 research projects under way, Cedars-Sinai focuses on translational studies that move advances directly from the laboratory to the bedside.

Nicole White | Cedars-Sinai Medical Center
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>