Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai Scientists Discover How a Molecular Receptor on White Blood Cells Identifies Invading Fungi

29.04.2011
Scientists at Cedars-Sinai Medical Center have discovered how a molecular receptor on the surface of white blood cells identifies when invading fungi have established direct contact with the cell surface and pose an infectious threat.

The receptor called Dectin-1, studied in the laboratory of David Underhill, PhD, an associate professor in Cedars-Sinai’s Inflammatory Bowel and Immunobiology Research Institute, detects fungi and instructs white blood cells whether to expend the energy needed to devour the invading pathogens. The findings are featured as the cover story in the April 28 edition of Nature.

Although scientists long have theorized how immune cells recognize microbial debris sloughed from invading organisms at some distance from themselves, this study establishes a model to explain how immune cells determine when pathogens are directly in contact with their surface and thus pose a significantly greater risk, demanding rapid destruction.

The study is important because it moves scientists one step closer to understanding the mysteries of how our bodies mount an immune response to fight disease.

In early stages of infection, white blood cells patrol the body looking for invading pathogens. Dectin-1, a receptor on the surface of white blood cells, recognizes specific components of fungal cell walls, and alerts or “switches on” the immune cells to prepare to fight the infection.

“Our lab has been studying Dectin-1, which directs white blood cells to eat and kill the fungi that they encounter directly, but to ignore soluble material sloughed off of the fungal surface which does not pose an immediate threat,” said Helen Goodridge, PhD, first author on the study and a researcher in the laboratory headed by Underhill. “This is important because phagocytosis and anti-microbial defense responses are energy-intensive and destructive, and should only be used when absolutely necessary.”

During phagocytosis, a white blood cell encounters a microbe, engulfs it, and eats it. Once inside the cell, the microbe can be killed using a combination of degradative enzymes, highly reactive chemicals, and an acidic environment.

A molecular structure that the Underhill lab calls a “phagocytic synapse” forms at the surface of the white blood cell when Dectin-1 detects fungi. As a phagocytic synapse forms, two inhibitory proteins that block transmission of signals inside the white blood cell are pushed aside. This allows Dectin-1 to instruct the cell to respond. The phagocytic synapse does not form when Dectin-1 encounters soluble fungal debris, so the white blood cell does not respond.

“The phagocytic synapse resembles another molecular structure, the ‘immunological synapse.’ It is critical at later stages of an immune response,” said Underhill. “It appears that the phagocytic synapse may be an evolutionary precursor of the immunological synapse.”

The study was funded by the National Institutes of Health, the American Heart Association, and the Crohn’s and Colitis Foundation of America. Underhill, who also directs the PhD Program in Biomedical Sciences and Translational Medicine at Cedars-Sinai, is the Medical Center’s Janis and William Wetsman Family Chair in Inflammatory Bowel Disease Research.

Nationally known for its high quality patient care, the Cedars-Sinai Health System includes a major research enterprise and ranks among the top 10 independent medical centers in terms of NIH research funding. With more than 850 research projects under way, Cedars-Sinai focuses on translational studies that move advances directly from the laboratory to the bedside.

Nicole White | Cedars-Sinai Medical Center
Further information:
http://www.cshs.org

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>