Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY Chemists Design Molecule that Responds to Stimuli

24.11.2010
The venus flytrap plant captures its prey when it senses the presence of an insect on the tips of its leaves. An amphiphilic molecule designed by chemists at The City College of New York acts in a similar manner by changing its structure when heated slightly and, then, reverting to its original form when cooled.

The finding, reported in the journal “Angewandte Chemie,” points toward the possibility of designing adaptive soft materials in the lab that take their cues from how nature responds to stimuli, said Dr. George John, associate professor and corresponding author.

Professor John and colleagues designed the molecule, which has both water-adhering and water-repelling ends, from cardanol, a naturally available material found in cashew nut shell liquid. When mixed with water, the molecules formed a self-assembled structure called a micelle with a water-adhering exterior and water-repelling interior.

Warming the micelles to 50 degrees Celsius caused them to take on a three-dimensional structure known as a vesicle that was larger – 200 – 300 nm in diameter – and viscous, much like oil. “The molecules would stick together, similar to caviar,” Professor John said. “When we touched the material with a glass rod, we could draw it out in a thin strand, much like glue.”

Allowing the material to cool resulted in the molecules reverting to their original micellar structure. When they were reheated, they would again take on the viscous form.

The change in structure resulted because, while heating caused the micelles to rearrange, they began to interlock in a bi-layer arrangement and eventually undergo curvature. Directional hydrogen bonding of the amide linkages and stacking of the aromatic ring groups, further stabilized the assembly.

The objective of the research is to study responsive systems, Professor John said. “If we can understand the influence of saturation at the bi-layer stage, we can regulate the adaptive response to stimuli.” This will require investigating the number of micelles needed in a mixture and where they need to be positioned.

Members of the team, besides Professor John, were: Dr. Sacha De Carlo, assistant professor of chemistry; Dr. Padmanava Pradhan, manager of CCNY’s nuclear magnetic resonance facility; postdoctoral fellow Dr. Vijai Balachandran, and graduate student Swapnil Jadhav. The research was partially supported by the American Chemical Society Petroleum Research Fund.

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>