Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY biologists identify new spiny pocket mouse species

01.02.2010
Heteromys catopterius Discovered in Venezuela’s Coastal Range

Dr. Robert P. Anderson, Associate Professor of Biology at The City College of New York, and Ph.D. student Eliécer E. Gutiérrez have reported the existence of a new species of spiny pocket mouse, from Venezuela, Heteromys catopterius.

The name derives from the Greek katoptêrios, which means a “height that commands a view.” It was chosen for the new species in reference to its presence on four wet, mountainous forest regions of the rugged and steep-sided Cordillera de la Costa along the country’s northern coast.

“Most people are surprised to learn that new species of mammals are still being discovered,” Professor Anderson said. “Sometimes they are discovered based on genetic work, but this is a case where anatomical studies made it clear a species existed that had never been recognized by biologists before.”

Several features differentiate the Overlook Spiny Pocket Mouse from the more common Heteromys anomalus, known as the Caribbean Spiny Pocket Mouse. H. catopterius has darker fur and lacks the distinctly rounded ears of H. anomalus. In addition, its skull is wider and less elongated. The Overlook Spiny Pocket Mouse is found in elevations ranging from 350 to 2,450 meters above sea level, although mostly above 700 meters. In contrast, H. anomalus resides mostly in lowlands and lower elevations of the mountains of the region.

The findings were published in the “Bulletin of the American Museum of Natural History,” in a Festschrift, a special volume in honor of Dr. Guy G. Musser, a curator at the museum who retired recently. The research was funded through a National Science Foundation grant.

In identifying a distinct species, researchers must look for data that indicate discrete morphologies, Professor Anderson explained. Further, they assess whether there is evidence for integration among the species.

“When you see gradual changes between locations, that is a sign that you do not have a distinct species,” he continued. “In this case, the species show very distinct morphology, even in the places where the vegetation types they inhabit come into contact.”

Professor Anderson, a leader in using GIS (geographic information systems) analysis to model species distributions (ranges), says his goal is to use the genus Heteromys as an example of how to integrate GIS, evolutionary biology and climate studies. With an aim toward conservation, he hopes to compare areas with suitable habitat for the species with the location of protected areas.

He and his collaborators at Brigham Young University and the Universidad Simón Bolívar are also currently performing genetic research to study evolutionary relationships in the genus. To complement this, Professor Anderson and his students are building GIS models of the species’ climatic requirements and applying them to reconstructions of past climates.

During the peak of the last Ice Age, when glaciers were extensive and temperatures were generally colder even in the tropics, distributions of this montane species were probably more contiguous, he explained. “We can take the same model of the species’ requirements and apply it to projections of future climate to predict what habitat will remain for the species as the climate gets warmer.”

He says it is likely that suitable habitats for this species will be reduced as a consequence of climate change. A GIS exercise studying the distribution of H. catopterius has been integrated into the laboratory of CCNY’s undergraduate biology course, “Ecology and Evolution.”

Contact: Ellis Simon, 212/650-6460, esimon@ccny.cuny.edu

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Life Sciences:

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

nachricht Organ Crosstalk: Fatty Liver Can Cause Damage to Other Organs
18.08.2017 | Deutsches Zentrum für Diabetesforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>