Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CCNY biologists identify new spiny pocket mouse species

01.02.2010
Heteromys catopterius Discovered in Venezuela’s Coastal Range

Dr. Robert P. Anderson, Associate Professor of Biology at The City College of New York, and Ph.D. student Eliécer E. Gutiérrez have reported the existence of a new species of spiny pocket mouse, from Venezuela, Heteromys catopterius.

The name derives from the Greek katoptêrios, which means a “height that commands a view.” It was chosen for the new species in reference to its presence on four wet, mountainous forest regions of the rugged and steep-sided Cordillera de la Costa along the country’s northern coast.

“Most people are surprised to learn that new species of mammals are still being discovered,” Professor Anderson said. “Sometimes they are discovered based on genetic work, but this is a case where anatomical studies made it clear a species existed that had never been recognized by biologists before.”

Several features differentiate the Overlook Spiny Pocket Mouse from the more common Heteromys anomalus, known as the Caribbean Spiny Pocket Mouse. H. catopterius has darker fur and lacks the distinctly rounded ears of H. anomalus. In addition, its skull is wider and less elongated. The Overlook Spiny Pocket Mouse is found in elevations ranging from 350 to 2,450 meters above sea level, although mostly above 700 meters. In contrast, H. anomalus resides mostly in lowlands and lower elevations of the mountains of the region.

The findings were published in the “Bulletin of the American Museum of Natural History,” in a Festschrift, a special volume in honor of Dr. Guy G. Musser, a curator at the museum who retired recently. The research was funded through a National Science Foundation grant.

In identifying a distinct species, researchers must look for data that indicate discrete morphologies, Professor Anderson explained. Further, they assess whether there is evidence for integration among the species.

“When you see gradual changes between locations, that is a sign that you do not have a distinct species,” he continued. “In this case, the species show very distinct morphology, even in the places where the vegetation types they inhabit come into contact.”

Professor Anderson, a leader in using GIS (geographic information systems) analysis to model species distributions (ranges), says his goal is to use the genus Heteromys as an example of how to integrate GIS, evolutionary biology and climate studies. With an aim toward conservation, he hopes to compare areas with suitable habitat for the species with the location of protected areas.

He and his collaborators at Brigham Young University and the Universidad Simón Bolívar are also currently performing genetic research to study evolutionary relationships in the genus. To complement this, Professor Anderson and his students are building GIS models of the species’ climatic requirements and applying them to reconstructions of past climates.

During the peak of the last Ice Age, when glaciers were extensive and temperatures were generally colder even in the tropics, distributions of this montane species were probably more contiguous, he explained. “We can take the same model of the species’ requirements and apply it to projections of future climate to predict what habitat will remain for the species as the climate gets warmer.”

He says it is likely that suitable habitats for this species will be reduced as a consequence of climate change. A GIS exercise studying the distribution of H. catopterius has been integrated into the laboratory of CCNY’s undergraduate biology course, “Ecology and Evolution.”

Contact: Ellis Simon, 212/650-6460, esimon@ccny.cuny.edu

Ellis Simon | EurekAlert!
Further information:
http://www.ccny.cuny.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>