Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cc to the brain: how neurons control fine motor behavior of the arm

31.01.2014
Motor commands issued by the brain to activate arm muscles take two different routes.

As the research group led by Professor Silvia Arber at the University of Basel's Biozentrum and the Friedrich Miescher Institute for Biomedical Research has now discovered, many neurons in the spinal cord send their instructions not only towards the musculature, but at the same time also back to the brain via an exquisitely organized network.


Synaptic terminals of premotor neurons in the studied brainstem nucleus (blue). Axons of a marked spinal interneuron subpopulation terminating in a specific domain of this brainstem nucleus (pink).

This dual information stream provides the neural basis for accurate control of arm and hand movements. These findings have now been published in Cell.

Movement is a fundamental capability of humans and animals, involving the highly complex interplay of brain, nerves and muscles. Movements of our arms and hands, in particular, call for extremely precise coordination. The brain sends a constant stream of commands via the spinal cord to our muscles to execute a wide variety of movements.

This stream of information from the brain reaches interneurons in the spinal cord, which then transmit the commands via further circuits to motor neurons innervating muscles. The research group led by Silvia Arber at the Biozentrum of the University of Basel and the Friedrich Miescher Institute for Biomedical Research has now elucidated the organization of a second information pathway taken by these commands.

Cc to the brain: one command – two directions
The scientists showed that many interneurons in the mouse spinal cord not only transmit their signals via motor neurons to the target muscle, but also simultaneously send a copy of this information back to the brain. Chiara Pivetta, first author of the publication, explains: “The motor command to the muscle is sent in two different directions – in one direction, to trigger the desired muscular contraction and in the other, to inform the brain that the command has actually been passed on to the musculature.” In analogy to e mail transmission, the information is thus not only sent to the recipient but also to the original requester.
Information to brainstem nucleus segregated by function
What happens to the information sent by spinal interneurons to the brain? As Arber’s group discovered, this input is segregated by function and spatially organized within a brainstem nucleus. Information from different types of interneurons thus flows to different areas of the nucleus. For example, spinal information that will influence left-right coordination of a movement is collected at a different site than information affecting the speed of a movement.
Fine motor skills supported by dual information stream
Arber comments: “From one millisecond to the next, this extremely precise feedback ensures that commands are correctly transmitted and that – via the signals sent back to the brain from the spinal cord – the resulting movement is immediately coordinated with the brain and adjusted.” Interestingly, the scientists only observed this kind of information flow to the brain for arm, but not for leg control. “What this shows,” says Arber, “is that this information pathway is most likely important for fine motor skills. Compared to the leg, movements of our arm and especially our hands have to be far more precise. Evidently, our body can only ensure this level of accuracy in motor control with constant feedback of information.”

In further studies, Silvia Arber’s group now plans to investigate what happens if the flow of information back to the brain is disrupted in specific ways. Since some interneurons facilitate and others inhibit movement, such studies could provide additional insights into the functionality of circuits controlling movement.

Original Citation
Chiara Pivetta, Maria Soledad Esposito, Markus Sigrist, and Silvia Arber
Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin

Cell, Volume 156, Issue 3, 537-548, 30 January 2014 | doi: 10.1016/j.cell.2013.12.014

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Protein scaffold
27.05.2015 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Seeing the action
27.05.2015 | University of California - Santa Barbara

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Advance in regenerative medicine

The only professorship in Germany to date, one master's programme, one laboratory with worldwide unique equipment and the corresponding research results: The University of Würzburg is leading in the field of biofabrication.

Paul Dalton is presently the only professor of biofabrication in Germany. About a year ago, the Australian researcher relocated to the Würzburg department for...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Researchers develop intelligent handheld robots

27.05.2015 | Power and Electrical Engineering

"Hidden" fragrance compound can cause contact allergy

27.05.2015 | Health and Medicine

Supernovas help 'clean' galaxies

27.05.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>