Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cc to the brain: how neurons control fine motor behavior of the arm

31.01.2014
Motor commands issued by the brain to activate arm muscles take two different routes.

As the research group led by Professor Silvia Arber at the University of Basel's Biozentrum and the Friedrich Miescher Institute for Biomedical Research has now discovered, many neurons in the spinal cord send their instructions not only towards the musculature, but at the same time also back to the brain via an exquisitely organized network.


Synaptic terminals of premotor neurons in the studied brainstem nucleus (blue). Axons of a marked spinal interneuron subpopulation terminating in a specific domain of this brainstem nucleus (pink).

This dual information stream provides the neural basis for accurate control of arm and hand movements. These findings have now been published in Cell.

Movement is a fundamental capability of humans and animals, involving the highly complex interplay of brain, nerves and muscles. Movements of our arms and hands, in particular, call for extremely precise coordination. The brain sends a constant stream of commands via the spinal cord to our muscles to execute a wide variety of movements.

This stream of information from the brain reaches interneurons in the spinal cord, which then transmit the commands via further circuits to motor neurons innervating muscles. The research group led by Silvia Arber at the Biozentrum of the University of Basel and the Friedrich Miescher Institute for Biomedical Research has now elucidated the organization of a second information pathway taken by these commands.

Cc to the brain: one command – two directions
The scientists showed that many interneurons in the mouse spinal cord not only transmit their signals via motor neurons to the target muscle, but also simultaneously send a copy of this information back to the brain. Chiara Pivetta, first author of the publication, explains: “The motor command to the muscle is sent in two different directions – in one direction, to trigger the desired muscular contraction and in the other, to inform the brain that the command has actually been passed on to the musculature.” In analogy to e mail transmission, the information is thus not only sent to the recipient but also to the original requester.
Information to brainstem nucleus segregated by function
What happens to the information sent by spinal interneurons to the brain? As Arber’s group discovered, this input is segregated by function and spatially organized within a brainstem nucleus. Information from different types of interneurons thus flows to different areas of the nucleus. For example, spinal information that will influence left-right coordination of a movement is collected at a different site than information affecting the speed of a movement.
Fine motor skills supported by dual information stream
Arber comments: “From one millisecond to the next, this extremely precise feedback ensures that commands are correctly transmitted and that – via the signals sent back to the brain from the spinal cord – the resulting movement is immediately coordinated with the brain and adjusted.” Interestingly, the scientists only observed this kind of information flow to the brain for arm, but not for leg control. “What this shows,” says Arber, “is that this information pathway is most likely important for fine motor skills. Compared to the leg, movements of our arm and especially our hands have to be far more precise. Evidently, our body can only ensure this level of accuracy in motor control with constant feedback of information.”

In further studies, Silvia Arber’s group now plans to investigate what happens if the flow of information back to the brain is disrupted in specific ways. Since some interneurons facilitate and others inhibit movement, such studies could provide additional insights into the functionality of circuits controlling movement.

Original Citation
Chiara Pivetta, Maria Soledad Esposito, Markus Sigrist, and Silvia Arber
Motor-Circuit Communication Matrix from Spinal Cord to Brainstem Neurons Revealed by Developmental Origin

Cell, Volume 156, Issue 3, 537-548, 30 January 2014 | doi: 10.1016/j.cell.2013.12.014

Heike Sacher | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>