Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of Ageing Remains Elusive

22.10.2014

A report by Chinese researchers in the journal Nature a few months ago was a small sensation: they appeared to have found the cause for why organisms age. An international team of scientists, headed by the University of Bonn, has now refuted a basic assumption of the Nature article. The reasons for ageing thus remain elusive.

The Chinese article caused a stir amongst experts worldwide. Using a simple measurement in young nematode worms, the researchers reported they had been able to predict how long they would live .


The photo shows a nematode worm with its mitochondria fluorescing in yellow due to sensor staining; a structural model of the probe is shown in the foreground.

© Dr. Markus Schwarzländer, Uni Bonn

The researchers had introduced a fluorescent probe called cpYFP into the cellular power stations, the mitochondria, of the worms. Mitochondria are present in most living organisms. They provide the energy for all processes of life.

Many biologists consider the mitochondria an important biological clock that drives ageing. As an underlying cause they suspect that the highly reactive molecules, so called free radicals, released during energy conversion by the power stations can react with cellular molecules causing damage. As a result cellular performance decreases until the cell dies.

This theory is not new – it was first proposed nearly 40 years ago. However, until today it has not been possible to show a conclusive link between mitochondrial activity, the formation of free radicals and ageing. En-Zhi Shen and his colleagues appeared to have found a critical link. They used cpYFP as a free radical detector. And indeed: the more frequently the probe lit up in young worms - i.e. the more free radicals they appeared to produce -, the shorter the worms lived.

An international team of scientists has now refuted a basic assumption of this study. Their work shows that cpYFP is not able to measure free radicals in the first place. Instead the signals of the probe are the result of changes in pH (that is the acidity) inside the mitochondria.

"From the published worm data we cannot conclude that the degree of free radical release determines lifespan." says Dr. Markus Schwarzländer, research group leader at the University of Bonn and first author of the publication. "cpYFP is not suitable to address this question." He adds that the relationship between the occurance of the probe signals and lifespan of the worms was exciting nevertheless. “Now we can focus on trying to understand its actual significance.“
The new study is soon to appear, also in the journal Nature. 28 experts from 9 countries were involved in this work. It was led by scientists from the University of Bonn, from the German Cancer Research Center Heidelberg, as well as from the Medical Research Council in Cambridge, England.

Publication: Markus Schwarzländer et al.: The ‘mitoflash’ probe cpYFP does not respond to superoxide; Nature Volume 514 Edition 7523; doi: 10.1038/nature13858

Contact details:
Dr. Markus Schwarzländer
Head of the Emmy-Noether Research Group „Plant Energy Biology“
Institute of Crop Science and Ressource Conservation, University of Bonn
Phone: +40-(0)228-73-54266
E-Mail: markus.schwarzlander@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>