Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cause of Ageing Remains Elusive

22.10.2014

A report by Chinese researchers in the journal Nature a few months ago was a small sensation: they appeared to have found the cause for why organisms age. An international team of scientists, headed by the University of Bonn, has now refuted a basic assumption of the Nature article. The reasons for ageing thus remain elusive.

The Chinese article caused a stir amongst experts worldwide. Using a simple measurement in young nematode worms, the researchers reported they had been able to predict how long they would live .


The photo shows a nematode worm with its mitochondria fluorescing in yellow due to sensor staining; a structural model of the probe is shown in the foreground.

© Dr. Markus Schwarzländer, Uni Bonn

The researchers had introduced a fluorescent probe called cpYFP into the cellular power stations, the mitochondria, of the worms. Mitochondria are present in most living organisms. They provide the energy for all processes of life.

Many biologists consider the mitochondria an important biological clock that drives ageing. As an underlying cause they suspect that the highly reactive molecules, so called free radicals, released during energy conversion by the power stations can react with cellular molecules causing damage. As a result cellular performance decreases until the cell dies.

This theory is not new – it was first proposed nearly 40 years ago. However, until today it has not been possible to show a conclusive link between mitochondrial activity, the formation of free radicals and ageing. En-Zhi Shen and his colleagues appeared to have found a critical link. They used cpYFP as a free radical detector. And indeed: the more frequently the probe lit up in young worms - i.e. the more free radicals they appeared to produce -, the shorter the worms lived.

An international team of scientists has now refuted a basic assumption of this study. Their work shows that cpYFP is not able to measure free radicals in the first place. Instead the signals of the probe are the result of changes in pH (that is the acidity) inside the mitochondria.

"From the published worm data we cannot conclude that the degree of free radical release determines lifespan." says Dr. Markus Schwarzländer, research group leader at the University of Bonn and first author of the publication. "cpYFP is not suitable to address this question." He adds that the relationship between the occurance of the probe signals and lifespan of the worms was exciting nevertheless. “Now we can focus on trying to understand its actual significance.“
The new study is soon to appear, also in the journal Nature. 28 experts from 9 countries were involved in this work. It was led by scientists from the University of Bonn, from the German Cancer Research Center Heidelberg, as well as from the Medical Research Council in Cambridge, England.

Publication: Markus Schwarzländer et al.: The ‘mitoflash’ probe cpYFP does not respond to superoxide; Nature Volume 514 Edition 7523; doi: 10.1038/nature13858

Contact details:
Dr. Markus Schwarzländer
Head of the Emmy-Noether Research Group „Plant Energy Biology“
Institute of Crop Science and Ressource Conservation, University of Bonn
Phone: +40-(0)228-73-54266
E-Mail: markus.schwarzlander@uni-bonn.de

Dr. Andreas Archut | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-bonn.de/

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>