Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Causative gene of a rare disorder discovered by sequencing only protein-coding regions of genome

Results show exome-sequencing might help identify genetic cause of thousands of disorders

For the first time, scientists have successfully used a method called exome sequencing to quickly discover a previously unknown gene responsible for a mendelian disorder.

Mendelian disorders, such as cystic fibrosis and sickle cell disease, are the result of one or more mutations in a single gene, typically a gene that makes a protein. All of the regions that code for proteins taken together are called the exome. The exome makes up about 1 percent of the genome, but it is in this 1 percent that more than 85 percent of mutations that cause mendelian disorders are found. That is why sequencing the exome is an efficient strategy to search for genes that underlie rare genetic disorders.

The study, "Exome sequencing identifies the cause of a mendelian disorder," was led by University of Washington (UW) researchers and published Nov. 13 in Nature Genetics.

While most mendelian disorders are rare, there are 7,000-plus suspected mendelian disorders that in aggregate affect millions of people in the United States, according to Dr. Michael J. Bamshad, one of the senior authors of the study, a UW professor of genome sciences and pediatrics, and a pediatrician at Seattle Children's. "Our results show that scientists could use exome sequencing to identify the genetic cause for thousands of disorders for which the gene hasn't been discovered."

"One of the reasons that this strategy is so powerful is that the scientists need only use a small number of unrelated cases to find the gene," said the other senior author of the study, Dr. Jay Shendure, UW assistant professor of genome sciences.

Dr. James Kiley, director of the Division of Lung Diseases at the National Heart, Lung and Blood Institute, part of the National Institutes of Healths in Bethesda, Md., said, "Following the recent successes with genome-wide association studies, this promising technology will advance our understanding of the genetic variants of both common disorders and rare diseases."

The disorder the UW research team used to test the strategy is Miller syndrome, whose genetic cause had been impossible to determine through conventional approaches. People with this syndrome have a number of malformations affecting their mouths, eyelids, ears, and feet. The research team was able to find that mutations in the gene, DHODH, cause Miller syndrome.

"Identifying the genetic basis of rare, single-gene diseases is of substantial interest to medical scientists," said Sarah Ng, a UW genome sciences graduate student and co-first author of the study, "because it provides important knowledge about disease mechanisms, biological pathways, and potential targets for therapies."

"Once we discover the causative gene," she added, "we can begin to look at how the gene might lead to the development of disease and what factors predict the outcome."

After scientists identify one causative gene and its repercussions, by extension they might discover other genes or environmental agents that affect the same biological pathway. For example, the malformation patterns found in Miller syndrome are similar to the birth defects in fetuses of some, but not all, mothers who took the drug methotrexate during pregnancy. Knowing this might provide some clues to genetic susceptibility to birth defects from methotrexate.

The ability of exome sequencing to identify a causative gene in a few months, compared to earlier methods that took years, "caused an audible gasp in the audience when we presented these findings to our peers," Bamshad said. "The power of this strategy is remarkable to many of us."

"We hope that the results of this study help point the way for thousands of scientists working on rare disorders who are seeking more efficient ways to locate the causative gene," Shendure added. "The exome sequencing strategy may also prove useful in studies of common disorders with complex genetics."

The study published in Nature Genetics was a collaborative effort among scientists from many disciplines and institutions. Other authors include co-first author Kati J. Buckingham, from the UW Department of Pediatrics; Choli Lee, UW Department of Genome Sciences; Abigail W. Bigham, UW Department of Pediatrics; Holly K. Tabor, UW Department of Pediatrics and the Treuman Center for Pediatric Bioethics at Seattle Children's; Karin M. Dent and Chad D. Huff from the University of Utah departments of pediatrics and human genetics, respectively; Paul T. Shannon of the Institute of Systems Biology in Seattle; Ethylin Wang Jabs of the Department of Genetics and Genome Sciences at Mount Sinai School of Medicine and the Department of Pediatrics at Johns Hopkins University, and Deborah Nickerson from the UW Department of Genome Sciences.

The research was funded by grants from the Eunice Kennedy Shriver National Institute of Child Health and Health and Human Development, the National Human Genome Research Institute, and the Heart, Lung, and Blood Institute, all at the National Institutes of Health; the state of Washington Life Sciences Discovery Fund and the Washington Research Foundation.

Leila Gray | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>