Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Causative gene of a rare disorder discovered by sequencing only protein-coding regions of genome

23.11.2009
Results show exome-sequencing might help identify genetic cause of thousands of disorders

For the first time, scientists have successfully used a method called exome sequencing to quickly discover a previously unknown gene responsible for a mendelian disorder.

Mendelian disorders, such as cystic fibrosis and sickle cell disease, are the result of one or more mutations in a single gene, typically a gene that makes a protein. All of the regions that code for proteins taken together are called the exome. The exome makes up about 1 percent of the genome, but it is in this 1 percent that more than 85 percent of mutations that cause mendelian disorders are found. That is why sequencing the exome is an efficient strategy to search for genes that underlie rare genetic disorders.

The study, "Exome sequencing identifies the cause of a mendelian disorder," was led by University of Washington (UW) researchers and published Nov. 13 in Nature Genetics.

While most mendelian disorders are rare, there are 7,000-plus suspected mendelian disorders that in aggregate affect millions of people in the United States, according to Dr. Michael J. Bamshad, one of the senior authors of the study, a UW professor of genome sciences and pediatrics, and a pediatrician at Seattle Children's. "Our results show that scientists could use exome sequencing to identify the genetic cause for thousands of disorders for which the gene hasn't been discovered."

"One of the reasons that this strategy is so powerful is that the scientists need only use a small number of unrelated cases to find the gene," said the other senior author of the study, Dr. Jay Shendure, UW assistant professor of genome sciences.

Dr. James Kiley, director of the Division of Lung Diseases at the National Heart, Lung and Blood Institute, part of the National Institutes of Healths in Bethesda, Md., said, "Following the recent successes with genome-wide association studies, this promising technology will advance our understanding of the genetic variants of both common disorders and rare diseases."

The disorder the UW research team used to test the strategy is Miller syndrome, whose genetic cause had been impossible to determine through conventional approaches. People with this syndrome have a number of malformations affecting their mouths, eyelids, ears, and feet. The research team was able to find that mutations in the gene, DHODH, cause Miller syndrome.

"Identifying the genetic basis of rare, single-gene diseases is of substantial interest to medical scientists," said Sarah Ng, a UW genome sciences graduate student and co-first author of the study, "because it provides important knowledge about disease mechanisms, biological pathways, and potential targets for therapies."

"Once we discover the causative gene," she added, "we can begin to look at how the gene might lead to the development of disease and what factors predict the outcome."

After scientists identify one causative gene and its repercussions, by extension they might discover other genes or environmental agents that affect the same biological pathway. For example, the malformation patterns found in Miller syndrome are similar to the birth defects in fetuses of some, but not all, mothers who took the drug methotrexate during pregnancy. Knowing this might provide some clues to genetic susceptibility to birth defects from methotrexate.

The ability of exome sequencing to identify a causative gene in a few months, compared to earlier methods that took years, "caused an audible gasp in the audience when we presented these findings to our peers," Bamshad said. "The power of this strategy is remarkable to many of us."

"We hope that the results of this study help point the way for thousands of scientists working on rare disorders who are seeking more efficient ways to locate the causative gene," Shendure added. "The exome sequencing strategy may also prove useful in studies of common disorders with complex genetics."

The study published in Nature Genetics was a collaborative effort among scientists from many disciplines and institutions. Other authors include co-first author Kati J. Buckingham, from the UW Department of Pediatrics; Choli Lee, UW Department of Genome Sciences; Abigail W. Bigham, UW Department of Pediatrics; Holly K. Tabor, UW Department of Pediatrics and the Treuman Center for Pediatric Bioethics at Seattle Children's; Karin M. Dent and Chad D. Huff from the University of Utah departments of pediatrics and human genetics, respectively; Paul T. Shannon of the Institute of Systems Biology in Seattle; Ethylin Wang Jabs of the Department of Genetics and Genome Sciences at Mount Sinai School of Medicine and the Department of Pediatrics at Johns Hopkins University, and Deborah Nickerson from the UW Department of Genome Sciences.

The research was funded by grants from the Eunice Kennedy Shriver National Institute of Child Health and Health and Human Development, the National Human Genome Research Institute, and the Heart, Lung, and Blood Institute, all at the National Institutes of Health; the state of Washington Life Sciences Discovery Fund and the Washington Research Foundation.

Leila Gray | EurekAlert!
Further information:
http://www.washington.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>