Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cats' Eye Diseases Genetically Linked to Diseases in Humans

06.03.2009
MU discovery could help identify therapy for humans and cats with forms of retinitis pigmentosa

About one in 3,500 people are affected with retinitis pigmentosa (RP), a disease of the retina's visual cells that eventually leads to blindness. Now, a University of Missouri researcher has identified a genetic link between cats and humans for two different forms of RP. This discovery will help scientists develop gene-based therapies that will benefit both cats and humans.

"The same genetic mutations that cause retinal blindness in humans also cause retinal blindness in cats," said Kristina Narfstrom, the Ruth M. Kraeuchi-Missouri Professor in Veterinary Ophthalmology in the MU College of Veterinary Medicine. "Now, cats with these mutations can be used as important animal models to evaluate the efficiency of gene therapy. In addition, the eye is an ideal organ to use as we examine the potential of gene replacement intervention because it offers an accessible and confined environment."

Researchers examined the genetic mutations in two groups of cats; one with a congenital form of RP and another with a late-onset form and were able to identify the genes responsible for both forms of the disease in cats. In the study, researchers found that cats with the late-onset form of the disease have a mutation in the CEP290 gene, which is the same mutation found in humans with Joubert syndrome and Leber's congenital amaurosis. In both of these diseases, the genetic mutations result in changes in the function and structure of the photoreceptors. A photoreceptor is a nerve cell found in the eye's retina that is capable of phototransduction, or the process by which light is converted into electrical signals. The changes in the photoreceptors result in cell death, which lead to blindness.

"Cats are excellent models because they have relatively large eyes that are comparable to those of human babies. The retinal changes that occur and the progression to blindness in cats is similar to what happens in the human disease," Narfstrom said. "As a surgeon, I can use the same treatment methods and tools in cats that they use in humans."

Human autosomal recessive RP is among the most common cause of retinal degeneration and blindness, with no therapeutic intervention available. Initially it leads to night blindness, then loss of peripheral vision and, with progression, there is also a loss of central vision.

Like humans, Abyssinian cats with the CEP290 mutation have normal vision at birth but develop early changes in the interior of their eyes by the time they are approximately 2 years old. The cats with the congenital form of the disease are blind from birth with severe changes in the interior of their eyes after only a couple of months.

In May, Narfstrom will present her latest findings during the Association for Research in Vision and Ophthalmology 2009 Annual Meeting in Fort Lauderdale, Fla. An earlier study, "Mutation in CEP290 Discovered for Cat Model of Human Retinal Degeneration," was published in the Journal of Heredity.

Story Contact: Kelsey Jackson, (573) 882-8353, JacksonKN@missouri.edu

Kelsey Jackson | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

nachricht eTRANSAFE – collaborative research project aimed at improving safety in drug development process
26.09.2017 | Fraunhofer-Gesellschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

The material that obscures supermassive black holes

26.09.2017 | Physics and Astronomy

Ageless ears? Elderly barn owls do not become hard of hearing

26.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>