Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catalytic upgrade


New catalysts to remove oxygenated compounds from bio-derived oils may lead to better and cheaper renewable biofuels

Dwindling crude oil reserves, accompanied by rising prices and environmental concerns, have led to increased interest in the use of renewable fuels. Biofuels produced from waste agricultural or forestry material are particularly desirable because they avoid diverting resources from the production of food crops.

The deoxygenation of biomass such as corn stover or forestry waste could be the key to development of viable biofuels.

© Matauw/iStock/Thinkstock

Oils produced by high-temperature treatment of these waste materials, however, contain a large amount of oxygenated compounds that result in undesirable properties such as high viscosity and corrosiveness.

Now, Jie Chang, Armando Borgna and co-workers from the A*STAR Institute of Chemical and Engineering Sciences in Singapore describe a series of catalysts that might be used to upgrade these oils by removing the undesirable oxygen-containing functional groups1. Using the compound guaiacol as a model for oxygenated bio-derived oils, the researchers found that the most promising catalysts for guaiacol deoxygenation are comprised of molybdenum metal on a carbon support.

The diversity of sources of waste biomass means that there is great variability in the content of the bio-oils produced by the initial heat treatment, which is itself the subject of much research. Guaiacol provides, in a single and easily available compound, the types of oxygen-containing functional groups that typically need to be removed.

Catalysts for the related process of desulfurization are widely used in petroleum refineries to produce cleaner fuels, but they are not optimized for deoxygenation. “The desulfurization catalysts are well developed and understood because of extensive research into the mechanisms by which they work,” explains Chang. “We are using guaiacol as a model compound to develop a similar level of understanding for deoxygenation.”

The best catalysts identified by the researchers show complete conversion of guaiacol and over 80 per cent selectivity to the desired hydrocarbon products within minutes.

Chang and co-workers undertook a detailed study of the structure of the catalysts before and during the reaction, as well as of the catalysts that were deactivated. They also attempted to identify the reaction process — in particular, the types of oxygen-containing functional groups that react first and whether this affects the performance of the catalyst.

While catalyst selectivity is critical, other factors such as the activity and stability of the catalyst will prove equally important because of their impact on the economics of the overall process. “There is a long way to go before this complete ‘biomass to fuel’ process can become commercial,” says Chang. “Also, we hope to develop the selectivity even further so that it becomes useful for developing fine chemicals as well as fuels.”

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

Associated links

Journal information

Chang, J., Danuthai, T., Dewiyanti, S., Wang, C. & Borgna, A. Hydrodeoxygenation of guaiacol over carbon-supported metal catalysts. ChemCatChem 5, 3041–3049 (2013)

A*STAR Research | Research SEA News
Further information:

Further reports about: A*STAR Chemical Engineering biomass catalyst catalysts compound fuels oxygen-containing

More articles from Life Sciences:

nachricht New study reveals what's behind a tarantula's blue hue
01.12.2015 | University of California - San Diego

nachricht Tracing a path toward neuronal cell death
01.12.2015 | Brigham and Women's Hospital

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

European Geosciences Union meeting: Media registration now open (EGU 2016 media advisory 1)

01.12.2015 | Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Latest News

USGS projects large loss of Alaska permafrost by 2100

01.12.2015 | Earth Sciences

New study reveals what's behind a tarantula's blue hue

01.12.2015 | Life Sciences

Climate Can Grind Mountains Faster Than They Can Be Rebuilt

01.12.2015 | Earth Sciences

More VideoLinks >>>