Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst sandwich

01.10.2010
Synthetic PCR mimic could lead to highly sensitive medical, environmental diagnostics

Northwestern University researchers have taken another step towards realizing a new class of polymerase chain reaction (PCR) enzyme mimics, opening the door for the development of highly sensitive chemical detection systems that go beyond nucleic acid targets.

The blueprint for building synthetic structures to detect and signal the presence of targets such as small molecule medical analytes (signalers of disease or bodily malfunction, such as neurotransmitters) and environmental hazards, such as TNT, to name just a few, is inspired by biology and its allosteric enzymes. The method also could be useful in catalysis and the production of polymers, including plastics.

The work, which promises higher sensitivity than that of current detection tools, will be published Oct. 1 by the journal Science.

"PCR -- the backbone of the biodiagnostics industry -- is an enzyme that binds to a nucleic acid and changes shape, turning on a catalyst that makes copies of the nucleic acid for detection purposes," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences.

"What if you could do that for thousands of small molecules of interest?" he said. "We'd like to be able to detect tiny amounts of targets important to medicine and the environment, opening avenues to new types of diagnostic tools, just as PCR did for the modern fields of medical diagnostics and forensics. Our new catalysts could make that possible."

Mirkin led a team of chemists who built a synthetic structure that, much like the layers of an Oreo cookie, sandwiches the catalyst between two chemically inert layers. This triple-layer architecture allows the use of any catalyst as it will be kept inactive, or in an "off" state, until triggered by a specific small molecule.

The enzyme mimic behaves like allosteric enzymes found in nature, catalysts that change shape to carry out their functions. (Hemoglobin is an example of an allosteric enzyme.) When the mimic reacts with a specific small molecule, the triple-layer structure changes shape and opens, exposing the catalyst. The resulting catalytic reaction signals the presence of the small molecule target, much like PCR amplifies a single piece of DNA.

"One of our challenges as synthetic chemists has been learning to synthesize structures inspired by biology but that have nothing to do with biology other than the fact we'd like such complex functions realized in man-made systems," said Mirkin, also director of Northwestern's International Institute for Nanotechnology.

In the work reported in Science, the researchers use an aluminum salen complex as the catalyst in the three-layer structure. The addition of chloride (the reduced form of chlorine) triggers the catalyst and starts the polymerization process. (Chloride ion binds at an allosteric binding site, distant from the active or catalytic site.) The addition of an agent that removes the chloride stops the process, but the chloride can be added back to start it again.

The title of the paper is "Allosteric Supramolecular Triple-Layer Catalysts." In addition to Mirkin, other authors of the paper are Hyo Jae Yoon, Junpei Kuwabara and Jun-Hyun Kim, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>