Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catalyst sandwich

Synthetic PCR mimic could lead to highly sensitive medical, environmental diagnostics

Northwestern University researchers have taken another step towards realizing a new class of polymerase chain reaction (PCR) enzyme mimics, opening the door for the development of highly sensitive chemical detection systems that go beyond nucleic acid targets.

The blueprint for building synthetic structures to detect and signal the presence of targets such as small molecule medical analytes (signalers of disease or bodily malfunction, such as neurotransmitters) and environmental hazards, such as TNT, to name just a few, is inspired by biology and its allosteric enzymes. The method also could be useful in catalysis and the production of polymers, including plastics.

The work, which promises higher sensitivity than that of current detection tools, will be published Oct. 1 by the journal Science.

"PCR -- the backbone of the biodiagnostics industry -- is an enzyme that binds to a nucleic acid and changes shape, turning on a catalyst that makes copies of the nucleic acid for detection purposes," said Chad A. Mirkin, George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences.

"What if you could do that for thousands of small molecules of interest?" he said. "We'd like to be able to detect tiny amounts of targets important to medicine and the environment, opening avenues to new types of diagnostic tools, just as PCR did for the modern fields of medical diagnostics and forensics. Our new catalysts could make that possible."

Mirkin led a team of chemists who built a synthetic structure that, much like the layers of an Oreo cookie, sandwiches the catalyst between two chemically inert layers. This triple-layer architecture allows the use of any catalyst as it will be kept inactive, or in an "off" state, until triggered by a specific small molecule.

The enzyme mimic behaves like allosteric enzymes found in nature, catalysts that change shape to carry out their functions. (Hemoglobin is an example of an allosteric enzyme.) When the mimic reacts with a specific small molecule, the triple-layer structure changes shape and opens, exposing the catalyst. The resulting catalytic reaction signals the presence of the small molecule target, much like PCR amplifies a single piece of DNA.

"One of our challenges as synthetic chemists has been learning to synthesize structures inspired by biology but that have nothing to do with biology other than the fact we'd like such complex functions realized in man-made systems," said Mirkin, also director of Northwestern's International Institute for Nanotechnology.

In the work reported in Science, the researchers use an aluminum salen complex as the catalyst in the three-layer structure. The addition of chloride (the reduced form of chlorine) triggers the catalyst and starts the polymerization process. (Chloride ion binds at an allosteric binding site, distant from the active or catalytic site.) The addition of an agent that removes the chloride stops the process, but the chloride can be added back to start it again.

The title of the paper is "Allosteric Supramolecular Triple-Layer Catalysts." In addition to Mirkin, other authors of the paper are Hyo Jae Yoon, Junpei Kuwabara and Jun-Hyun Kim, all from Northwestern.

Megan Fellman | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht ‘Farming’ bacteria to boost growth in the oceans
24.10.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht Calcium Induces Chronic Lung Infections
24.10.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>