Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New catalyst could cut cost of making hydrogen fuel

03.07.2013
A discovery at the University of Wisconsin-Madison may represent a significant advance in the quest to create a "hydrogen economy" that would use this abundant element to store and transfer energy.

Theoretically, hydrogen is the ultimate non-carbon, non-polluting fuel for storing intermittent energy from the wind or sun. When burned for energy, hydrogen produces water but no carbon dioxide. Practically speaking, producing hydrogen from water, and then storing and using the gas, have proven difficult.

The new study, now published online at the Journal of the American Chemical Society, introduces a new catalyst structure that can facilitate the use of electricity to produce hydrogen gas from water.

Significantly, the catalyst avoids the rare, expensive metal platinum that is normally required for this reaction. (Catalysts speed up chemical reactions without themselves being consumed.)

The material under study, molybdenum disulfide, contains two common elements, notes Mark Lukowski, a Ph.D. student working with associate professor Song Jin in the UW-Madison chemistry department. "Most people have tried to reduce the cost of the catalyst by making small particles that use less platinum, but here we got rid of the platinum altogether and still got reasonably high performance."

The research group has produced milligram quantities of the catalyst, "but in principle you could scale this up," says Lukowski. "Molybdenum disulfide is a commercially available product. To control purity and structure, we go through the trouble of synthesizing it from the bottom up, but you could buy it today."

To make the new material, Lukowski and Jin deposit nanostructures of molybdenum disulfide on a disk of graphite and then apply a lithium treatment to create a different structure with different properties.

Just as carbon can form diamond for jewelry and graphite for writing, molybdenum disulfide can be a semiconductor or a metallic phase, depending on structure. When the compound is grown on the graphite, it is a semiconductor, but it becomes metallic after the lithium treatment. Lukowski and Jin discovered that the metallic phase has far greater catalytic properties.

"Like graphite, which is made up of a stack of sheets that easily separate, molybdenum disulfide is made up of individual sheets that can come apart, and previous studies have shown that the catalytically active sites are located along the edges of the sheets," says Lukowski.

"The lithium treatment both causes the semiconducting-to-metallic phase change and separates the sheets, creating more edges. We have taken away the limitation from molybdenum disulfide and made the active sites both more pervasive and more reactive."

The experiment, supported by the U.S. Department of Energy's Basic Energy Sciences program, is a proof of concept for a new approach for improving these catalysts, says Jin.

"Even though the efficiency of producing hydrogen has been greatly improved, it is still not as good as what platinum can achieve," he says. "The next steps include finding ways to further improve the performance by optimizing all aspects of the process and exploring related compounds. There are many hurdles to achieving a hydrogen economy, but the advantages in efficiency and pollution reduction are so significant that we must push ahead."

As technological advances put further strain on the supply of platinum and other rare elements, using common elements is a major advantage, Jin stresses. "The elements we use are cheap and abundant in earth's crust, and the raw material is already commercially available at low cost. Building on this discovery and new understanding, we would like to further improve these materials to achieve the efficient production of hydrogen without using precious metals."

—David Tenenbaum, 608-265-8549, djtenenb@wisc.edu

Song Jin | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>