Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis research - TU Berlin receives more than one million dollars

16.09.2011
TU Berlin receives more than one million dollars in funding from the United States for catalysis research

"In the field of electromobility mainly research on lithium-ion battery technology has been promoted in the past years. But the limits of this technology become more and more obvious," states Peter Strasser, a professor for chemical engineering at the TU Berlin and member of the Cluster of Excellence "Unifying Concepts in Catalysis" (UniCat).

"Thereby the idea of hydrogen based e-mobility slowly returns to the center of attention. In this technology a fuel cell, acting as an energy converter, feeds the electrical motor. Conceivably a fuel cell could also be used as a kind of ‘range extender’ - thus as an additional device to increase the cruising range – interacting with a Li-battery."

His research team constitutes part of a high-profile project of the U.S. Department of Energy (DoE), which researches new nano-structured materials. The researchers aim to make the catalytic conversion of hydrogen and oxygen into usable electricity in fuel cells more efficient and less costly. The DoE recently approved a total of 5.3 million U.S. dollars in funding for the next three years, of which approximately $ 1.5 million will go to the TU Berlin.

The TU team works closely with two industrial partners and three academic institutions, namely the Massachusetts Institute of Technology (MIT), Northeastern University and George Washington University.

Hydrogen fuel cells use molecular hydrogen to store energy. Their density is almost 200 times higher than that of a Li-ion battery. In the drive mechanism of the hydrogen-based fuel cell the chemical energy of hydrogen is converted into electrical energy. Although the practical conversion efficiency currently is only about 50 percent, an electric car requires only about six kilograms of hydrogen for a 450 km range, and refueling takes only six minutes. On the other hand, a typical Li-ion battery weighs at least 200 kilograms, takes six to nine hours for loading and provides only enough energy for a range of 200 km. In addition, if the vehicle is solely battery powered it has to be air-conditioned electrically because there is no waste heat. This again can significantly reduce the range.

"When comparing the costs, the fuel cell also scores much better," declares Strasser. "Li-ion batteries currently cost about 300 € per kilowatt hour. In a typical-sized vehicle a range of 200 kilometers amounts to about 12,000 €. Comparable performance characteristics with a fuel cell of the latest generation cost around 5,000 €; in this case the range naturally depends on the size of the tank, not of the fuel cell. "What makes fuel cells expensive is, above all, the precious metal platinum which is used as a catalyst in nanostructured form. Peter Strasser and his colleagues in the joint project want to reduce exactly this part of the costs. So far, 0.8 grams of platinum were needed per kilowatt. The scientists want to reduce this amount to 0.1 grams per kilowatt. At a platinum price of about € 40 per gram, the platinum catalyst would then only make up 400 € of the fuel cell costs. A comparable amount of platinum is currently used in each exhaust catalyst.

The work group led by Professor Strasser has been working on a new family of nanostructured fuel cell catalysts since 2005. They consist of a platinum-poor core surrounded by a thin platinum-rich shell. In the first place this reduces the required amount of platinum; secondly, the platinum-rich shell catalyzes the chemical processes far better than pure platinum. However, the life expectancy of the material during ongoing fuel cell operation is still a challenge. Strasser and his team are looking for ways to stabilize the core-shell configuration with new carrier materials, mainly nitrogen-containing carbon, but also by adding additional metal particles in the nucleus.

"In this international collaborative project the construction of new nanomaterials and the basic electrochemical characterization in fuel cells promote interdisciplinary links between large-scale research facilities, such as ‘Bessy II' in Berlin or the Brookhaven National Laboratory in the U.S., with modern X-ray based inspection methods. The project also reflects the importance of the current research area of ‘energy materials’," explains Peter Strasser. "If we are successful with this technique, this project can severely accelerate the expanding commercialization of fuel cell technology."

"Unifying Concepts in Catalysis" (UniCat) is the sole Cluster of Excellence in Germany researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. UniCat receives funding of approximately € 5.6 million each year as part of the Excellence Initiative of the German Research Foundation.

For further information please contact: Prof. Dr. Peter Strasser, Technische Universität Berlin, School II Mathematics and Natural Sciences, Department of Chemistry, Chair of Chemical Engineering, Phone: +49 (0)30 314-29542, Email: pstrasser@tu-berlin.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de

More articles from Life Sciences:

nachricht Molecular microscopy illuminates molecular motor motion
26.07.2017 | Penn State

nachricht New virus discovered in migratory bird in Rio Grande do Sul, Brazil
26.07.2017 | Fundação de Amparo à Pesquisa do Estado de São Paulo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>