Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis research - TU Berlin receives more than one million dollars

16.09.2011
TU Berlin receives more than one million dollars in funding from the United States for catalysis research

"In the field of electromobility mainly research on lithium-ion battery technology has been promoted in the past years. But the limits of this technology become more and more obvious," states Peter Strasser, a professor for chemical engineering at the TU Berlin and member of the Cluster of Excellence "Unifying Concepts in Catalysis" (UniCat).

"Thereby the idea of hydrogen based e-mobility slowly returns to the center of attention. In this technology a fuel cell, acting as an energy converter, feeds the electrical motor. Conceivably a fuel cell could also be used as a kind of ‘range extender’ - thus as an additional device to increase the cruising range – interacting with a Li-battery."

His research team constitutes part of a high-profile project of the U.S. Department of Energy (DoE), which researches new nano-structured materials. The researchers aim to make the catalytic conversion of hydrogen and oxygen into usable electricity in fuel cells more efficient and less costly. The DoE recently approved a total of 5.3 million U.S. dollars in funding for the next three years, of which approximately $ 1.5 million will go to the TU Berlin.

The TU team works closely with two industrial partners and three academic institutions, namely the Massachusetts Institute of Technology (MIT), Northeastern University and George Washington University.

Hydrogen fuel cells use molecular hydrogen to store energy. Their density is almost 200 times higher than that of a Li-ion battery. In the drive mechanism of the hydrogen-based fuel cell the chemical energy of hydrogen is converted into electrical energy. Although the practical conversion efficiency currently is only about 50 percent, an electric car requires only about six kilograms of hydrogen for a 450 km range, and refueling takes only six minutes. On the other hand, a typical Li-ion battery weighs at least 200 kilograms, takes six to nine hours for loading and provides only enough energy for a range of 200 km. In addition, if the vehicle is solely battery powered it has to be air-conditioned electrically because there is no waste heat. This again can significantly reduce the range.

"When comparing the costs, the fuel cell also scores much better," declares Strasser. "Li-ion batteries currently cost about 300 € per kilowatt hour. In a typical-sized vehicle a range of 200 kilometers amounts to about 12,000 €. Comparable performance characteristics with a fuel cell of the latest generation cost around 5,000 €; in this case the range naturally depends on the size of the tank, not of the fuel cell. "What makes fuel cells expensive is, above all, the precious metal platinum which is used as a catalyst in nanostructured form. Peter Strasser and his colleagues in the joint project want to reduce exactly this part of the costs. So far, 0.8 grams of platinum were needed per kilowatt. The scientists want to reduce this amount to 0.1 grams per kilowatt. At a platinum price of about € 40 per gram, the platinum catalyst would then only make up 400 € of the fuel cell costs. A comparable amount of platinum is currently used in each exhaust catalyst.

The work group led by Professor Strasser has been working on a new family of nanostructured fuel cell catalysts since 2005. They consist of a platinum-poor core surrounded by a thin platinum-rich shell. In the first place this reduces the required amount of platinum; secondly, the platinum-rich shell catalyzes the chemical processes far better than pure platinum. However, the life expectancy of the material during ongoing fuel cell operation is still a challenge. Strasser and his team are looking for ways to stabilize the core-shell configuration with new carrier materials, mainly nitrogen-containing carbon, but also by adding additional metal particles in the nucleus.

"In this international collaborative project the construction of new nanomaterials and the basic electrochemical characterization in fuel cells promote interdisciplinary links between large-scale research facilities, such as ‘Bessy II' in Berlin or the Brookhaven National Laboratory in the U.S., with modern X-ray based inspection methods. The project also reflects the importance of the current research area of ‘energy materials’," explains Peter Strasser. "If we are successful with this technique, this project can severely accelerate the expanding commercialization of fuel cell technology."

"Unifying Concepts in Catalysis" (UniCat) is the sole Cluster of Excellence in Germany researching the economically important field of catalysis. More than 250 chemists, physicists, biologists and engineers from four universities and two Max Planck research institutes from Berlin and Potsdam are involved in this interdisciplinary research network. The Cluster is hosted by the Technische Universität Berlin. UniCat receives funding of approximately € 5.6 million each year as part of the Excellence Initiative of the German Research Foundation.

For further information please contact: Prof. Dr. Peter Strasser, Technische Universität Berlin, School II Mathematics and Natural Sciences, Department of Chemistry, Chair of Chemical Engineering, Phone: +49 (0)30 314-29542, Email: pstrasser@tu-berlin.de

Stefanie Terp | idw
Further information:
http://www.tu-berlin.de

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>