Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Putting cyanide to work

11.10.2012
Industrial-scale chemistry could benefit from a robust new catalyst that selectively generates amino acid precursors from cyanide at room temperature

Cyanide exposure can be lethal, but with careful handling, the molecule can be a very useful chemical building block. For example, from cyanide chemists can make life-essential amino acids that are in great demand as food additives and components in pharmaceutical production.


The self-supporting catalyst (top) is covered with tiny chiral pockets, within which simple starting materials (bottom, left) are converted into chiral amino acid precursors (bottom, right). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (top image)

The key step in this process is called the asymmetric Strecker reaction. Until now, this reaction has needed complex and costly catalysts, restricting its use to small-scale laboratory research. A new Strecker catalyst more amenable to scale-up is now available, thanks to Abdul Seayad, Balamurugan Ramalingam and their co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore. The catalyst also offers a safer way to handle the cyanide.

Seayad and Ramalingam made their Strecker catalyst from an inexpensive material based on titanium. It is called the self-supported chiral titanium cluster (SCTC). When warmed in the presence of water, the SCTC precursor assembles into robust solid clusters (see image). The key to its performance in the Strecker reaction is that the surface of each cluster is covered in tiny asymmetric “chiral pockets”, says Seayad. The reactions take place in these pockets, generating molecules that are a trivial chemical step away from amino acids.

Amino acids are chiral: they can exist in either of two mirror-image forms called enantiomers. For many applications — such as pharmaceutical production — chemists need a pure supply of only one enantiomer. Seayad and Ramalingam found that SCTC’s chiral pockets very selectively produce one enantiomer over the other, with a purity — or ‘enantiomeric excess’ — of up to 99%. Unlike previous catalysts, which required temperatures as low as -30 °C to operate effectively, the researchers achieved this selectivity at room temperature.

Stability is a further advantage of SCTC. The catalyst is impervious to air or moisture, and remains stable to 300 °C, making it well suited to use in a continuous flow reactor. The researchers could pack the catalyst into a cartridge and pump through the cyanide and other starting materials, generating amino acids in a steady stream. Safety is another key advantage, says Ramalingam. “Since only a limited amount of cyanide is present at the reaction zone at any point in time, any unforeseen situation can be easily handled,” he explains.

So far, the researchers have used an expensive reagent called TMSCN as their cyanide source. They are currently researching ways to generate SCTC in situ from inexpensive salts. “We will also evaluate the feasibility of up-scaling the reaction under flow conditions,” Seayad says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

References

Seayad, A. M., Ramalingam, B., Chai, C. L. L., Li, C., Garland, M. V. & Yoshinaga, K. Self-supported chiral titanium cluster (SCTC) as a robust catalyst for the asymmetric cyanation of imines under batch and continuous flow at room temperature. Chemistry – A European Journal 18, 5693–5700 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>