Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Putting cyanide to work

11.10.2012
Industrial-scale chemistry could benefit from a robust new catalyst that selectively generates amino acid precursors from cyanide at room temperature

Cyanide exposure can be lethal, but with careful handling, the molecule can be a very useful chemical building block. For example, from cyanide chemists can make life-essential amino acids that are in great demand as food additives and components in pharmaceutical production.


The self-supporting catalyst (top) is covered with tiny chiral pockets, within which simple starting materials (bottom, left) are converted into chiral amino acid precursors (bottom, right). © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (top image)

The key step in this process is called the asymmetric Strecker reaction. Until now, this reaction has needed complex and costly catalysts, restricting its use to small-scale laboratory research. A new Strecker catalyst more amenable to scale-up is now available, thanks to Abdul Seayad, Balamurugan Ramalingam and their co-workers at the A*STAR Institute of Chemical and Engineering Sciences in Singapore. The catalyst also offers a safer way to handle the cyanide.

Seayad and Ramalingam made their Strecker catalyst from an inexpensive material based on titanium. It is called the self-supported chiral titanium cluster (SCTC). When warmed in the presence of water, the SCTC precursor assembles into robust solid clusters (see image). The key to its performance in the Strecker reaction is that the surface of each cluster is covered in tiny asymmetric “chiral pockets”, says Seayad. The reactions take place in these pockets, generating molecules that are a trivial chemical step away from amino acids.

Amino acids are chiral: they can exist in either of two mirror-image forms called enantiomers. For many applications — such as pharmaceutical production — chemists need a pure supply of only one enantiomer. Seayad and Ramalingam found that SCTC’s chiral pockets very selectively produce one enantiomer over the other, with a purity — or ‘enantiomeric excess’ — of up to 99%. Unlike previous catalysts, which required temperatures as low as -30 °C to operate effectively, the researchers achieved this selectivity at room temperature.

Stability is a further advantage of SCTC. The catalyst is impervious to air or moisture, and remains stable to 300 °C, making it well suited to use in a continuous flow reactor. The researchers could pack the catalyst into a cartridge and pump through the cyanide and other starting materials, generating amino acids in a steady stream. Safety is another key advantage, says Ramalingam. “Since only a limited amount of cyanide is present at the reaction zone at any point in time, any unforeseen situation can be easily handled,” he explains.

So far, the researchers have used an expensive reagent called TMSCN as their cyanide source. They are currently researching ways to generate SCTC in situ from inexpensive salts. “We will also evaluate the feasibility of up-scaling the reaction under flow conditions,” Seayad says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences

References

Seayad, A. M., Ramalingam, B., Chai, C. L. L., Li, C., Garland, M. V. & Yoshinaga, K. Self-supported chiral titanium cluster (SCTC) as a robust catalyst for the asymmetric cyanation of imines under batch and continuous flow at room temperature. Chemistry – A European Journal 18, 5693–5700 (2012).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>