Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catalysis: Optimizing water splitting

Computer simulations of a metal–sulfide alloy unlock the secrets to designing solar-powered catalysts that generate hydrogen fuel from water
Partnerships can pay off when it comes to converting solar into chemical energy. By modeling a cadmium sulfide (CdS)–zinc sulfide (ZnS) alloy with special computational techniques, a Singapore-based research team has identified the key photocatalytic properties that enable this chemical duo to ‘split’ water molecules into a fuel, hydrogen gas (H2). The theoretical study was published by Jianwei Zheng from the A*STAR Institute of High Performance Computing and his co-workers.

Chemists had already identified CdS and ZnS semiconductors as promising photocatalysts for water splitting. However, both came with a drawback related to the size of their so-called ‘band gap’ — the energy difference between occupied and unoccupied electronic states that determine photo-activity. While CdS can readily harvest solar energy because of its small band gap, it needs a metal co-catalyst to produce H2. On the other hand, ZnS requires high-energy ultraviolet light to initiate water splitting owing to its large band gap.

Recently chemists had overcome these problems by alloying CdS and ZnS together into a ‘solid solution’: a physical state where Zn ions are distributed homogenously inside the crystal lattice of CdS. Altering the proportion of ZnS in these alloys enables production of photocatalysts with tunable responses to visible light and high H2 evolution rates in water. Improving the design of a Cd–ZnS solid solution is difficult, because its underlying mechanism is poorly understood.

As a workaround, Zheng and his co-workers used a technique known as ‘special quasi-random structures’ (SQS) to mimic a completely random alloy with a series of small, periodic models. After carefully working to correlate experimental random hexagonal crystals with their SQS approximations, they calculated the electronic properties of the Cd–ZnS solid solution using hybrid density functional theory — a computational method that gives accurate descriptions of band gaps.

When the researchers gradually increased the Zn content of their model alloy, they saw that the band gap deviated from a linear combination of the two components. This effect, known as band ‘bowing’, arises from volume deformations within the Cd–ZnS solid solution and is an essential parameter for predicting catalytic solar H2 production.

Further calculations revealed that the alloy’s high catalytic activity stemmed from obvious elevation of the position of unoccupied electronic states, and a subtle change in the position of occupied electronic states, as the amount of Zn increased. But to retain strong light harvesting capabilities and to avoid premature corrosion, the team proposes an equal ratio of ZnS to CdS for optimal photocatalytic water splitting.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing


Wu, J.-C., Zheng, J.-W., Zacherl, C. L., Wu, P., Liu, Z.-K. & Xu R. Hybrid functionals study of band bowing, band edges and electronic structures of Cd1–xZnxS solid solution. Journal of Physical Chemistry C 115, 19741–19748 (2011).

A*STAR Research | Research asia research news
Further information:

More articles from Life Sciences:

nachricht International team discovers novel Alzheimer's disease risk gene among Icelanders
24.10.2016 | Baylor College of Medicine

nachricht New bacteria groups, and stunning diversity, discovered underground
24.10.2016 | DOE/Lawrence Berkeley National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>