Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalysis: Optimizing water splitting

01.10.2012
Computer simulations of a metal–sulfide alloy unlock the secrets to designing solar-powered catalysts that generate hydrogen fuel from water
Partnerships can pay off when it comes to converting solar into chemical energy. By modeling a cadmium sulfide (CdS)–zinc sulfide (ZnS) alloy with special computational techniques, a Singapore-based research team has identified the key photocatalytic properties that enable this chemical duo to ‘split’ water molecules into a fuel, hydrogen gas (H2). The theoretical study was published by Jianwei Zheng from the A*STAR Institute of High Performance Computing and his co-workers.

Chemists had already identified CdS and ZnS semiconductors as promising photocatalysts for water splitting. However, both came with a drawback related to the size of their so-called ‘band gap’ — the energy difference between occupied and unoccupied electronic states that determine photo-activity. While CdS can readily harvest solar energy because of its small band gap, it needs a metal co-catalyst to produce H2. On the other hand, ZnS requires high-energy ultraviolet light to initiate water splitting owing to its large band gap.

Recently chemists had overcome these problems by alloying CdS and ZnS together into a ‘solid solution’: a physical state where Zn ions are distributed homogenously inside the crystal lattice of CdS. Altering the proportion of ZnS in these alloys enables production of photocatalysts with tunable responses to visible light and high H2 evolution rates in water. Improving the design of a Cd–ZnS solid solution is difficult, because its underlying mechanism is poorly understood.

As a workaround, Zheng and his co-workers used a technique known as ‘special quasi-random structures’ (SQS) to mimic a completely random alloy with a series of small, periodic models. After carefully working to correlate experimental random hexagonal crystals with their SQS approximations, they calculated the electronic properties of the Cd–ZnS solid solution using hybrid density functional theory — a computational method that gives accurate descriptions of band gaps.

When the researchers gradually increased the Zn content of their model alloy, they saw that the band gap deviated from a linear combination of the two components. This effect, known as band ‘bowing’, arises from volume deformations within the Cd–ZnS solid solution and is an essential parameter for predicting catalytic solar H2 production.

Further calculations revealed that the alloy’s high catalytic activity stemmed from obvious elevation of the position of unoccupied electronic states, and a subtle change in the position of occupied electronic states, as the amount of Zn increased. But to retain strong light harvesting capabilities and to avoid premature corrosion, the team proposes an equal ratio of ZnS to CdS for optimal photocatalytic water splitting.

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing

References:

Wu, J.-C., Zheng, J.-W., Zacherl, C. L., Wu, P., Liu, Z.-K. & Xu R. Hybrid functionals study of band bowing, band edges and electronic structures of Cd1–xZnxS solid solution. Journal of Physical Chemistry C 115, 19741–19748 (2011).

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>