Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using cassava to address vitamin A deficiency

05.10.2010
A natural variation shows promise for increasing provitamin A in cassava roots using transgenic or conventional methods

The roots of cassava (Manihot esculenta) serve as the primary source of carbohydrates in the diets of people in many arid regions of the world, including more than 250 million people in sub-Saharan Africa.

Unfortunately the roots of commercial cassava cultivars are quite low in micronutrients, and micronutrient deficiencies are widespread in these regions. In addition to programs designed to deliver vitamin supplements, there has been considerable effort aimed at biofortification; that is, increasing the amounts of available micronutrients in staple crops such as cassava.

An article published in The Plant Cell this week describes the results of a collaborative effort led by Professor Peter Beyer from Freiberg University in Germany, together with researchers at the International Center for Tropical Agriculture (CIAT) in Colombia. These researchers studied a naturally arising variant of cassava with yellow roots in order to understand the synthesis of provitamin A carotenoids, dietary precursors of vitamin A. Beyer was also co-creator of Golden Rice, a biofortified crop which provides precursors of vitamin A not usually present in the rice that people eat.

In this work, the scientists compared different cassava cultivars with white, cream, or yellow roots – more yellow corresponding to more carotenoids – in order to determine the underlying causes of the higher carotenoid levels found in the rare yellow-rooted cassava cultivar. They tracked the difference down to a single amino acid change in the enzyme phytoene synthase, which functions in the biochemical pathway that produces carotenoids. The authors went on to show that the analogous change in phytoene synthases from other species also results in increased carotenoid synthesis, suggesting that the research could have relevance to a number of different crop plants. Furthermore, they were able to turn a white-rooted cassava cultivar into a yellow-rooted plant that accumulates beta-carotene (provitamin A) using a transgenic approach that increased the enzyme phytoene synthase in the root.

This work beautifully combines genetics with biochemistry and molecular biology to deepen our understanding of carotenoid biosynthesis. "It paves the way for using transgenic or conventional breeding methods to generate commercial cassava cultivars containing high levels of provitamin A carotenoids, by the exchange of a single amino acid already present in cassava" says Beyer. Thus, it has the potential be a big step the battle against vitamin A deficiency, which is estimated to affect approximately one third of the world's preschool age children.

This research was supported by the HarvestPlus research consortium, which received a grant from the Bill & Melinda Gates Foundation.

The research paper cited in this report is available at the following link: Welsh et al. Plant Cell

Full citation: Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., Chavarriaga, P., Ceballos, H., Tohme, J., and Beyer, P. (2010). Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 10.1105/tpc.110.077560.

The Plant Cell (http://www.plantcell.org/) is published by the American Society of Plant Biologists, a professional scientific society, headquartered in Rockville, Maryland, that is devoted to the advancement of the plant sciences worldwide. With a membership of nearly 5,000 plant biologists from throughout the United States and more than 50 other nations, the society publishes two of the world's more influential plant science research journals: The Plant Cell and Plant Physiology. For more information about ASPB, please visit http://www.aspb.org/.

Figure credit: International Center for Tropical Agriculture (CIAT)

Restrictions: Use for noncommercial, educational purposes is granted without written permission. Please include a citation and acknowledge ASPB as copyright holder. For all other uses, contact diane@aspb.org

Nancy Hofmann | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>