Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using cassava to address vitamin A deficiency

05.10.2010
A natural variation shows promise for increasing provitamin A in cassava roots using transgenic or conventional methods

The roots of cassava (Manihot esculenta) serve as the primary source of carbohydrates in the diets of people in many arid regions of the world, including more than 250 million people in sub-Saharan Africa.

Unfortunately the roots of commercial cassava cultivars are quite low in micronutrients, and micronutrient deficiencies are widespread in these regions. In addition to programs designed to deliver vitamin supplements, there has been considerable effort aimed at biofortification; that is, increasing the amounts of available micronutrients in staple crops such as cassava.

An article published in The Plant Cell this week describes the results of a collaborative effort led by Professor Peter Beyer from Freiberg University in Germany, together with researchers at the International Center for Tropical Agriculture (CIAT) in Colombia. These researchers studied a naturally arising variant of cassava with yellow roots in order to understand the synthesis of provitamin A carotenoids, dietary precursors of vitamin A. Beyer was also co-creator of Golden Rice, a biofortified crop which provides precursors of vitamin A not usually present in the rice that people eat.

In this work, the scientists compared different cassava cultivars with white, cream, or yellow roots – more yellow corresponding to more carotenoids – in order to determine the underlying causes of the higher carotenoid levels found in the rare yellow-rooted cassava cultivar. They tracked the difference down to a single amino acid change in the enzyme phytoene synthase, which functions in the biochemical pathway that produces carotenoids. The authors went on to show that the analogous change in phytoene synthases from other species also results in increased carotenoid synthesis, suggesting that the research could have relevance to a number of different crop plants. Furthermore, they were able to turn a white-rooted cassava cultivar into a yellow-rooted plant that accumulates beta-carotene (provitamin A) using a transgenic approach that increased the enzyme phytoene synthase in the root.

This work beautifully combines genetics with biochemistry and molecular biology to deepen our understanding of carotenoid biosynthesis. "It paves the way for using transgenic or conventional breeding methods to generate commercial cassava cultivars containing high levels of provitamin A carotenoids, by the exchange of a single amino acid already present in cassava" says Beyer. Thus, it has the potential be a big step the battle against vitamin A deficiency, which is estimated to affect approximately one third of the world's preschool age children.

This research was supported by the HarvestPlus research consortium, which received a grant from the Bill & Melinda Gates Foundation.

The research paper cited in this report is available at the following link: Welsh et al. Plant Cell

Full citation: Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., Chavarriaga, P., Ceballos, H., Tohme, J., and Beyer, P. (2010). Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 10.1105/tpc.110.077560.

The Plant Cell (http://www.plantcell.org/) is published by the American Society of Plant Biologists, a professional scientific society, headquartered in Rockville, Maryland, that is devoted to the advancement of the plant sciences worldwide. With a membership of nearly 5,000 plant biologists from throughout the United States and more than 50 other nations, the society publishes two of the world's more influential plant science research journals: The Plant Cell and Plant Physiology. For more information about ASPB, please visit http://www.aspb.org/.

Figure credit: International Center for Tropical Agriculture (CIAT)

Restrictions: Use for noncommercial, educational purposes is granted without written permission. Please include a citation and acknowledge ASPB as copyright holder. For all other uses, contact diane@aspb.org

Nancy Hofmann | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>