Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Using cassava to address vitamin A deficiency

05.10.2010
A natural variation shows promise for increasing provitamin A in cassava roots using transgenic or conventional methods

The roots of cassava (Manihot esculenta) serve as the primary source of carbohydrates in the diets of people in many arid regions of the world, including more than 250 million people in sub-Saharan Africa.

Unfortunately the roots of commercial cassava cultivars are quite low in micronutrients, and micronutrient deficiencies are widespread in these regions. In addition to programs designed to deliver vitamin supplements, there has been considerable effort aimed at biofortification; that is, increasing the amounts of available micronutrients in staple crops such as cassava.

An article published in The Plant Cell this week describes the results of a collaborative effort led by Professor Peter Beyer from Freiberg University in Germany, together with researchers at the International Center for Tropical Agriculture (CIAT) in Colombia. These researchers studied a naturally arising variant of cassava with yellow roots in order to understand the synthesis of provitamin A carotenoids, dietary precursors of vitamin A. Beyer was also co-creator of Golden Rice, a biofortified crop which provides precursors of vitamin A not usually present in the rice that people eat.

In this work, the scientists compared different cassava cultivars with white, cream, or yellow roots – more yellow corresponding to more carotenoids – in order to determine the underlying causes of the higher carotenoid levels found in the rare yellow-rooted cassava cultivar. They tracked the difference down to a single amino acid change in the enzyme phytoene synthase, which functions in the biochemical pathway that produces carotenoids. The authors went on to show that the analogous change in phytoene synthases from other species also results in increased carotenoid synthesis, suggesting that the research could have relevance to a number of different crop plants. Furthermore, they were able to turn a white-rooted cassava cultivar into a yellow-rooted plant that accumulates beta-carotene (provitamin A) using a transgenic approach that increased the enzyme phytoene synthase in the root.

This work beautifully combines genetics with biochemistry and molecular biology to deepen our understanding of carotenoid biosynthesis. "It paves the way for using transgenic or conventional breeding methods to generate commercial cassava cultivars containing high levels of provitamin A carotenoids, by the exchange of a single amino acid already present in cassava" says Beyer. Thus, it has the potential be a big step the battle against vitamin A deficiency, which is estimated to affect approximately one third of the world's preschool age children.

This research was supported by the HarvestPlus research consortium, which received a grant from the Bill & Melinda Gates Foundation.

The research paper cited in this report is available at the following link: Welsh et al. Plant Cell

Full citation: Welsch, R., Arango, J., Bär, C., Salazar, B., Al-Babili, S., Beltrán, J., Chavarriaga, P., Ceballos, H., Tohme, J., and Beyer, P. (2010). Provitamin A accumulation in cassava (Manihot esculenta) roots driven by a single nucleotide polymorphism in a phytoene synthase gene. Plant Cell 10.1105/tpc.110.077560.

The Plant Cell (http://www.plantcell.org/) is published by the American Society of Plant Biologists, a professional scientific society, headquartered in Rockville, Maryland, that is devoted to the advancement of the plant sciences worldwide. With a membership of nearly 5,000 plant biologists from throughout the United States and more than 50 other nations, the society publishes two of the world's more influential plant science research journals: The Plant Cell and Plant Physiology. For more information about ASPB, please visit http://www.aspb.org/.

Figure credit: International Center for Tropical Agriculture (CIAT)

Restrictions: Use for noncommercial, educational purposes is granted without written permission. Please include a citation and acknowledge ASPB as copyright holder. For all other uses, contact diane@aspb.org

Nancy Hofmann | EurekAlert!
Further information:
http://www.aspb.org

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>