Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Case Western Reserve team discovers 'smart' insulin molecule

13.04.2010
Researchers invent zinc-stapled insulin to massively reduce insulin-related cancer risk

For millions of Americans with Type-2 diabetes and inject insulin to control diabetes (with onset typically in adulthood) the associated risk of cancer is of increasing concern. Studies have demonstrated that obesity and excess insulin – whether naturally produced by the body or injected in synthetic form – are associated with an increased incidence of some common cancers.

With the release of today's study, "Supramolecular Protein Engineering – Design of Zinc-Stapled Insulin Hexamers as a Long Acting Depot," in the prestigious Journal of Biological Chemistry, a team of researchers from Case Western Reserve University School of Medicine, led by Michael Weiss, MD, PhD, Cowan-Blum Professor of Cancer Research and Chair of the Department of Biochemistry, reveals their invention of a "smart" insulin protein molecule that binds considerably less to cancer receptors and self-assembles under the skin. To provide a slow-release form of insulin, t he analog self-assembles under the skin by means of "stapling" itself via bridging zinc ions. In light of its scientific and societal importance, the publication was highlighted as a "Paper of the Week" by the editors of the journal.

"It's quite a novel mechanism. Our team has applied the perspective of biomedical engineering to the biochemistry of a therapeutic protein. We regard the injected insulin solution as forming a new biomaterial that can be engineered to optimize its nano-scale properties," says Dr. Weiss. He adds, "The notion of engineered zinc staples may find application to improve diverse injectable protein drugs to address a variety of conditions from cancer to immune deficiency."

While initially tested in diabetic rats by team member Faramarz Ismail-Beigi, PhD, professor of medicine at CWRU School of Medicine, the study of this new, self-assembling insulin will continue with approval by the National Institutes of Health toward the goal of human clinical trials.

"The goal of all drug therapies is to make therapeutic molecules more selective, in other words, more effective with less complications. We've sought to accomplish this with our engineering a new and "smarter" insulin molecule, as the hormone's primary job is to bind to the key receptors that regulate blood glucose concentration (designated the insulin receptor), not cancer-related receptors," says Dr. Weiss.

The new insulin analog exhibits reduced binding to a receptor that can drive cell growth, called the IGF receptor. Protein engineering spans both basic science and its translation to clinical care. Critical to reaching the translational goal of improved insulin therapy was an interdisciplinary team, including endocrinologist, Dr. Ismail-Beigi; biochemist, Nelson Phillips, PhD, associate professor of biochemistry; X-ray crystallographer, Zhu-li Wan, PhD, instructor in biochemistry; and receptor expert, Jonathan Whittaker, PhD, associate professor of biochemistry.

The study concludes and demonstrates, "…The potential of interfacial zinc-binding sites, introduced by design, to modify the pharmacokinetics of a protein in a subcutaneous depot. Such bottom-up control of assembly illustrates general principles of supramolecular chemistry and their application to nanobiotechnology.

"Zinc stapling of insulin exemplifies a general strategy to modify the pharmacokinetic and biological properties of a subcutaneous protein depot. The engineering of novel lattice contacts in protein crystals can thus enable control of supramolecular assembly as a therapeutic protein nanotechnology."

About Case Western Reserve University School of Medicine

Founded in 1843, Case Western Reserve University School of Medicine is the largest medical research institution in Ohio and is among the nation's top medical schools for research funding from the National Institutes of Health. The School of Medicine is recognized throughout the international medical community for outstanding achievements in teaching. The School's innovative and pioneering Western Reserve2 curriculum interweaves four themes--research and scholarship, clinical mastery, leadership, and civic professionalism--to prepare students for the practice of evidence-based medicine in the rapidly changing health care environment of the 21st century. Eleven Nobel Laureates have been affiliated with the school.

Annually, the School of Medicine trains more than 800 M.D. and M.D./Ph.D. students and ranks in the top 25 among U.S. research-oriented medical schools as designated by U.S. News &World Report "Guide to Graduate Education."

The School of Medicine's primary affiliate is University Hospitals Case Medical Center and is additionally affiliated with MetroHealth Medical Center, the Louis Stokes Cleveland Department of Veterans Affairs Medical Center, and the Cleveland Clinic, with which it established the Cleveland Clinic Lerner College of Medicine of Case Western Reserve University in 2002. http://casemed.case.edu.

Christina DeAngelis | EurekAlert!
Further information:
http://www.case.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>