Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carving up water

05.07.2010
Single water molecules can now be sliced into different atomic components, thanks to the electronic properties of ultrathin oxide films

In its bulk state, magnesium oxide (MgO) is a chalky white, rather unreactive mineral that is best known as an ingredient in antacid medication. But when this compound is formed into nanoscale films, only a few atoms deep, things begin to change. While bulk MgO is an insulator, ultrathin MgO can transfer small amounts of charge to substances, such as metal catalysts, adsorbed on its surface—giving these films the ability to tune chemical reactivity and unlock new reaction routes.

Now, researchers led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako have used MgO films to establish unprecedented control over bond-breaking pathways at the single molecule level. The team reports that water molecules adsorbed onto ultrathin MgO can be selectively split apart using the sharp tip of a scanning tunneling microscope (STM)1.

According to lead author Hyung-Joon Shin, understanding the activity of MgO films required a detailed study with a well-known compound. “The atomic-scale picture of a single water molecule on the MgO surface has been [in] demand for a long time,” says Shin. “And, we expected to see interesting dynamics from the water molecules.”

In their STM experiment, the researchers worked at temperatures close to absolute zero to produce stable images of water molecules adsorbed on ultrathin MgO. By injecting small amounts of tunneling current with the STM tip, they could make the water molecules ‘hop’ laterally around the surface—but only at applied voltages corresponding to the vibrational frequencies of hydrogen–oxygen bonds. Excitations beyond these vibrational thresholds caused a chemical reaction: the water molecules dissociated into a new species, which STM images and theoretical analysis revealed was a hydroxyl group.

Because the energy required to split water on the MgO film was much lower than the hydrogen–oxygen bond energy, the researchers theorized that ultrathin MgO traps tunneling electrons in the molecule—generating a resonance-enhanced vibration that shakes the molecule apart. “The vibrationally induced dissociation of single water molecules has never been observed before,” says Shin.

The team’s experiment yielded a third discovery about the MgO surface. By injecting tunneling electrons at voltages close to the hydrogen–oxygen bond energy, STM images showed that another chemical transformation occurred: this time, water molecules split into atomic oxygen. Having two selectable water dissociation pathways—one vibrational, one electronic—has potent implications for ‘green’ energy research, because water splitting is one of the simplest way to produce clean hydrogen fuel.

The corresponding author for this highlight is based at the Surface and Interface Science Laboratory, RIKEN Advanced Science Institute


Journal information
1. Shin, H.-J., Jung, J., Motobayashi, K., Yanagisawa, S., Morikawa, Y., Kim, Y. & Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010)

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>