Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carving up water

Single water molecules can now be sliced into different atomic components, thanks to the electronic properties of ultrathin oxide films

In its bulk state, magnesium oxide (MgO) is a chalky white, rather unreactive mineral that is best known as an ingredient in antacid medication. But when this compound is formed into nanoscale films, only a few atoms deep, things begin to change. While bulk MgO is an insulator, ultrathin MgO can transfer small amounts of charge to substances, such as metal catalysts, adsorbed on its surface—giving these films the ability to tune chemical reactivity and unlock new reaction routes.

Now, researchers led by Yousoo Kim and Maki Kawai at the RIKEN Advanced Science Institute in Wako have used MgO films to establish unprecedented control over bond-breaking pathways at the single molecule level. The team reports that water molecules adsorbed onto ultrathin MgO can be selectively split apart using the sharp tip of a scanning tunneling microscope (STM)1.

According to lead author Hyung-Joon Shin, understanding the activity of MgO films required a detailed study with a well-known compound. “The atomic-scale picture of a single water molecule on the MgO surface has been [in] demand for a long time,” says Shin. “And, we expected to see interesting dynamics from the water molecules.”

In their STM experiment, the researchers worked at temperatures close to absolute zero to produce stable images of water molecules adsorbed on ultrathin MgO. By injecting small amounts of tunneling current with the STM tip, they could make the water molecules ‘hop’ laterally around the surface—but only at applied voltages corresponding to the vibrational frequencies of hydrogen–oxygen bonds. Excitations beyond these vibrational thresholds caused a chemical reaction: the water molecules dissociated into a new species, which STM images and theoretical analysis revealed was a hydroxyl group.

Because the energy required to split water on the MgO film was much lower than the hydrogen–oxygen bond energy, the researchers theorized that ultrathin MgO traps tunneling electrons in the molecule—generating a resonance-enhanced vibration that shakes the molecule apart. “The vibrationally induced dissociation of single water molecules has never been observed before,” says Shin.

The team’s experiment yielded a third discovery about the MgO surface. By injecting tunneling electrons at voltages close to the hydrogen–oxygen bond energy, STM images showed that another chemical transformation occurred: this time, water molecules split into atomic oxygen. Having two selectable water dissociation pathways—one vibrational, one electronic—has potent implications for ‘green’ energy research, because water splitting is one of the simplest way to produce clean hydrogen fuel.

The corresponding author for this highlight is based at the Surface and Interface Science Laboratory, RIKEN Advanced Science Institute

Journal information
1. Shin, H.-J., Jung, J., Motobayashi, K., Yanagisawa, S., Morikawa, Y., Kim, Y. & Kawai, M. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Materials 9, 442–447 (2010)

gro-pr | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>