Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrying calcium

21.02.2011
Molecular simulations explain how enzymatic pumps transport calcium ions within muscle cells

The transport of ions is essential for the routine maintenance of the body. For this reason cells contain specialized enzymes that act as pumps that help ions to move around and pass through boundaries.

Now, Yuji Sugita at the RIKEN Advanced Science Institute in Wako and colleagues have used computer simulations to explain how one particularly important pump enzyme, Ca2+-ATPase, transports calcium ions in muscle cells[1].

“The calcium ion pump is an essential membrane protein that can transport Ca2+ ions across biological membranes against a large concentration gradient,” explains Sugita. “It is believed to be related to some human heart diseases because there are large concentrations of the pump in the cell membranes of the heart, and the calcium ions work as messengers in muscle cells.”

Specifically, each molecule of Ca2+-ATPase transports two calcium ions at a time from a cell’s cytoplasm into the sarcoplasmic reticulum (SR), a subcellular structure devoted to regulating calcium levels. By this method the SR releases calcium ions when muscles are contracted, then reabsorbs them when muscles are relaxed.

Previous research has shown that Ca2+-ATPase on the SR membrane functions by switching between two states. First the binding sites face outwards and have high affinity for calcium in order to ‘gather’ ions from the cytoplasm. Then they face inwards and lose their affinity, thus releasing the ions into the SR.

To investigate exactly how this switching mechanism works, Sugita and colleagues focused on the role of a glutamate called Glu771, which is often found near the calcium binding sites. Studies have shown that when Glu771 is removed by mutation the calcium pump loses all its calcium-binding ability.

The researchers ran molecular dynamics simulations for both normal and mutant versions of the calcium pump. Their results revealed that the presence of Glu771 prevents water molecules from interfering at the binding site (Fig. 1). In the Glu771 mutant, this system breaks down and the binding sites get flooded with water.

This is the first time that research has indicated a relationship between calcium binding and the shielding of water, the team notes. Sugita is hopeful that with the help of more powerful computers, he and his colleagues could soon simulate a full enzymatic cycle of the calcium pump.

“We are developing new algorithms that combine all-atom and coarse-grained models,” he says. “Using such multi-scale simulation methods, we hope to elucidate further molecular mechanisms of ion uptake by the calcium pump or other ion pumps.”

The corresponding author for this highlight is based at the Theoretical Biochemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Sugita, Y., Ikeguchi, M. & Toyoshima, C. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proceedings of the National Academy of Sciences USA 107, 21465–21469 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth
01.03.2017 | Hochschule für Angewandte Wissenschaften Hamburg

nachricht Researchers Imitate Molecular Crowding in Cells
01.03.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

A better way to measure the stiffness of cancer cells

01.03.2017 | Health and Medicine

Exploring the mysteries of supercooled water

01.03.2017 | Physics and Astronomy

Research team of the HAW Hamburg reanimated ancestral microbe from the depth of the earth

01.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>