Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrying calcium

21.02.2011
Molecular simulations explain how enzymatic pumps transport calcium ions within muscle cells

The transport of ions is essential for the routine maintenance of the body. For this reason cells contain specialized enzymes that act as pumps that help ions to move around and pass through boundaries.

Now, Yuji Sugita at the RIKEN Advanced Science Institute in Wako and colleagues have used computer simulations to explain how one particularly important pump enzyme, Ca2+-ATPase, transports calcium ions in muscle cells[1].

“The calcium ion pump is an essential membrane protein that can transport Ca2+ ions across biological membranes against a large concentration gradient,” explains Sugita. “It is believed to be related to some human heart diseases because there are large concentrations of the pump in the cell membranes of the heart, and the calcium ions work as messengers in muscle cells.”

Specifically, each molecule of Ca2+-ATPase transports two calcium ions at a time from a cell’s cytoplasm into the sarcoplasmic reticulum (SR), a subcellular structure devoted to regulating calcium levels. By this method the SR releases calcium ions when muscles are contracted, then reabsorbs them when muscles are relaxed.

Previous research has shown that Ca2+-ATPase on the SR membrane functions by switching between two states. First the binding sites face outwards and have high affinity for calcium in order to ‘gather’ ions from the cytoplasm. Then they face inwards and lose their affinity, thus releasing the ions into the SR.

To investigate exactly how this switching mechanism works, Sugita and colleagues focused on the role of a glutamate called Glu771, which is often found near the calcium binding sites. Studies have shown that when Glu771 is removed by mutation the calcium pump loses all its calcium-binding ability.

The researchers ran molecular dynamics simulations for both normal and mutant versions of the calcium pump. Their results revealed that the presence of Glu771 prevents water molecules from interfering at the binding site (Fig. 1). In the Glu771 mutant, this system breaks down and the binding sites get flooded with water.

This is the first time that research has indicated a relationship between calcium binding and the shielding of water, the team notes. Sugita is hopeful that with the help of more powerful computers, he and his colleagues could soon simulate a full enzymatic cycle of the calcium pump.

“We are developing new algorithms that combine all-atom and coarse-grained models,” he says. “Using such multi-scale simulation methods, we hope to elucidate further molecular mechanisms of ion uptake by the calcium pump or other ion pumps.”

The corresponding author for this highlight is based at the Theoretical Biochemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Sugita, Y., Ikeguchi, M. & Toyoshima, C. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proceedings of the National Academy of Sciences USA 107, 21465–21469 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>