Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carrying calcium

21.02.2011
Molecular simulations explain how enzymatic pumps transport calcium ions within muscle cells

The transport of ions is essential for the routine maintenance of the body. For this reason cells contain specialized enzymes that act as pumps that help ions to move around and pass through boundaries.

Now, Yuji Sugita at the RIKEN Advanced Science Institute in Wako and colleagues have used computer simulations to explain how one particularly important pump enzyme, Ca2+-ATPase, transports calcium ions in muscle cells[1].

“The calcium ion pump is an essential membrane protein that can transport Ca2+ ions across biological membranes against a large concentration gradient,” explains Sugita. “It is believed to be related to some human heart diseases because there are large concentrations of the pump in the cell membranes of the heart, and the calcium ions work as messengers in muscle cells.”

Specifically, each molecule of Ca2+-ATPase transports two calcium ions at a time from a cell’s cytoplasm into the sarcoplasmic reticulum (SR), a subcellular structure devoted to regulating calcium levels. By this method the SR releases calcium ions when muscles are contracted, then reabsorbs them when muscles are relaxed.

Previous research has shown that Ca2+-ATPase on the SR membrane functions by switching between two states. First the binding sites face outwards and have high affinity for calcium in order to ‘gather’ ions from the cytoplasm. Then they face inwards and lose their affinity, thus releasing the ions into the SR.

To investigate exactly how this switching mechanism works, Sugita and colleagues focused on the role of a glutamate called Glu771, which is often found near the calcium binding sites. Studies have shown that when Glu771 is removed by mutation the calcium pump loses all its calcium-binding ability.

The researchers ran molecular dynamics simulations for both normal and mutant versions of the calcium pump. Their results revealed that the presence of Glu771 prevents water molecules from interfering at the binding site (Fig. 1). In the Glu771 mutant, this system breaks down and the binding sites get flooded with water.

This is the first time that research has indicated a relationship between calcium binding and the shielding of water, the team notes. Sugita is hopeful that with the help of more powerful computers, he and his colleagues could soon simulate a full enzymatic cycle of the calcium pump.

“We are developing new algorithms that combine all-atom and coarse-grained models,” he says. “Using such multi-scale simulation methods, we hope to elucidate further molecular mechanisms of ion uptake by the calcium pump or other ion pumps.”

The corresponding author for this highlight is based at the Theoretical Biochemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Sugita, Y., Ikeguchi, M. & Toyoshima, C. Relationship between Ca2+-affinity and shielding of bulk water in the Ca2+-pump from molecular dynamics simulations. Proceedings of the National Academy of Sciences USA 107, 21465–21469 (2010).

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>