Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnitine supplements reverse glucose intolerance in animals

14.08.2009
Supplementing obese rats with the nutrient carnitine helps the animals to clear the extra sugar in their blood, something they had trouble doing on their own, researchers at Duke University Medical Center report.

A team led by Deborah Muoio (Moo-ee-oo), Ph.D., of the Duke Sarah W. Stedman Nutrition and Metabolism Center, also performed tests on human muscle cells that showed supplementing with carnitine might help older people with prediabetes, diabetes, and other disorders that make glucose (sugar) metabolism difficult.

Carnitine is made in the liver and recycled by the kidney, but in some cases when this is insufficient, dietary carnitine from red meat and other animal foods can compensate for the shortfall.

After just eight weeks of supplementation with carnitine, the obese rats restored their cells' fuel- burning capacity (which was shut down by a lack of natural carnitine) and improved their glucose tolerance, a health outcome that indicates a lower risk of diabetes.

These results offer hope for a new therapeutic option for people with glucose intolerance, older people, people with kidney disease, and those with type 2 diabetes (what used to be called adult-onset diabetes).

Muoio said that soon her team of researchers will begin a small clinical trial of carnitine supplementation in people who fit the profile of those who might benefit from additional carnitine – older people (60 to 80 years) with glucose intolerance.

The study is published in the Aug. 21 issue of the Journal of Biological Chemistry.

The Duke researchers began studying carnitine more closely when abnormalities in the nutrient emerged from blood chemistry profiles of obese and old animals. These chemical profiles report on hundreds of byproducts of cell metabolism called metabolites and give scientists an opportunity to identify markers of disease states.

Carnitine is a natural compound known for helping fatty acids enter the mitochondria, the powerhouses of cells, where fatty acids are "burned" to give cells energy for their various tasks. Carnitine also helps move excess fuel from cells into the circulating blood, which then redistributes this energy source to needier organs or to the kidneys for removal. These processes occur through the formation of acylcarnitine molecules, energy molecules that can cross membrane barriers that encase all cells.

Researchers at Duke had observed that skeletal muscle of obese rats produced high amounts of the acylcarnitines, which requires free carnitine. As these molecules started to accumulate, the availability of free, unprocessed carnitine decreased. This imbalance was linked to fuel-burning problems, that is, impairments in the cells' combustion of both fat and glucose fuel.

"We suspected that persistent increases in acylcarnitines in the rats were causing problems, and we could also see that the availability of free carnitine was decreasing with weight gain and aging," said Muoio. "It appeared that carnitine could no longer do its job when chronic metabolic disruptions were stressing the system. That's when we designed an experiment to add extra carnitine to the rats' diet."

Muoio is also a professor in the departments of medicine, pharmacology and cancer biology.

Other study authors included Robert C. Noland, Sarah E. Seiler, Helen Lum, Olga Ilkayeva, Robert Stevens, and Timothy R. Koves of the Sarah W. Stedman Nutrition and Metabolism Center. Koves is also with the Duke Department of Medicine. Robert M. Lust is with the Department of Physiology at East Carolina University in Greenville, N.C., and Fausto G. Hegardt is with the CIBER division Fisiopatología de la Obesidad y la Nutrición of the Instituto de Salud Carlos III in Spain.

The work was supported by grants from the National Institutes of Health, and the American Diabetes Association, and a John A. Hartford Duke Center for Excellence Award.

Mary Jane Gore | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>