Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon researchers develop artificial cells to study molecular crowding and gene expression

15.07.2013
Tightly packed macromolecules enhance gene expression in artificial cellular system

The interior of a living cell is a crowded place, with proteins and other macromolecules packed tightly together. A team of scientists at Carnegie Mellon University has approximated this molecular crowding in an artificial cellular system and found that tight quarters help the process of gene expression, especially when other conditions are less than ideal.

As the researchers report in an advance online publication by the journal Nature Nanotechnology, these findings may help explain how cells have adapted to the phenomenon of molecular crowding, which has been preserved through evolution. And this understanding may guide synthetic biologists as they develop artificial cells that might someday be used for drug delivery, biofuel production and biosensors.

"These are baby steps we're taking in learning how to make artificial cells," said Cheemeng Tan, a Lane Postdoctoral Fellow and a Branco-Weiss Fellow in the Lane Center for Computational Biology, who led the study. Most studies of synthetic biological systems today employ solution-based chemistry, which does not involve molecular crowding. The findings of the CMU study and the lessons of evolution suggest that bioengineers will need to build crowding into artificial cells if synthetic genetic circuits are to function as they would in real cells.

The research team, which included Russell Schwartz, professor of biological sciences; Philip LeDuc, professor of mechanical engineering and biological sciences; Marcel Bruchez, professor of chemistry; and Saumya Saurabh, a Ph.D. student in chemistry, developed their artificial cellular system using molecular components from bacteriophage T7, a virus that infects bacteria that is often used as a model in synthetic biology.

To mimic the crowded intracellular environment, the researchers used various amounts of inert polymers to gauge the effects of different density levels.

Crowding in a cell isn't so different from a crowd of people, Tan said. If only a few people are in a room, it's easy for people to mingle, or even to become isolated. But in a crowded room where it's hard to move around, individuals will often tend to stay close to each other for extended periods. The same thing happens in a cell. If the intracellular space is crowded, binding between molecules increases.

Notably, the researchers found that the dense environments also made gene transcription less sensitive to environmental changes. When the researchers altered concentrations of magnesium, ammonium and spermidine – chemicals that modulate the stability and binding of macromolecules – they found higher perturbations of gene expression in low density environments than in high density environments.

"Artificial cellular systems have tremendous potential for applications in drug delivery, bioremediation and cellular computing," Tan said. "Our findings underscore how scientists could harness functioning mechanisms of natural cells to their advantage to control these synthetic cellular systems, as well as in hybrid systems that combine synthetic materials and natural cells."

This work was supported by grants from the National Institutes of Health and the National Science Foundation, as well as Tan's Lane Postdoctoral Fellowship and his Society in Science – Branco Weiss Fellowship. The Lane Center for Computational Biology is part of Carnegie Mellon's School of Computer Science.

About Carnegie Mellon University: Carnegie Mellon (http://www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 12,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon has campuses in Pittsburgh, Pa., California's Silicon Valley and Qatar, and programs in Africa, Asia, Australia, Europe and Mexico. The university recently completed "Inspire Innovation: The Campaign for Carnegie Mellon University," exceeding its $1 billion goal to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements. The campaign closed June 30, 2013.

Byron Spice | EurekAlert!
Further information:
http://www.cmu.edu

More articles from Life Sciences:

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>