Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carnegie Mellon fluorescent biosensor reveals mechanism critical to immune system amplification

24.04.2012
Using a new fluorescent biosensor they developed, researchers at Carnegie Mellon University have discovered how a key set of immune cells exchange information during their coordinated assault on invading pathogens.

The immune cells, called dendritic cells, are harnessed by cancer vaccines and other therapeutics used to amplify the immune system. The finding, published online March 29 in the journal Angewandte Chemie, marks the first time that scientists have visualized how antigens are transferred in the immune system between dendritic cells.

"Knowing the mechanism behind what's going on in these dendritic cells — how they are talking to each other in order to amplify the immune response — is of fundamental significance," said Marcel P. Bruchez, associate professor of biological sciences and chemistry in the Mellon College of Science.

Dendritic cells are specialized immune cells that search for and capture foreign micro-organisms like bacteria, allergens or viruses. The cells engulf the invading organism and break it down into pieces. The dendritic cell then places these pieces, called antigens, on its cell surface.

When a dendritic cell presents antigens on its surface, it instructs other immune cells to multiply and scour the body in search of the harmful micro-organisms. Dendritic cells also can share antigens with other dendritic cells to boost immune cell activation. While scientists knew that antigens from one dendritic cell could show up in another dendritic cell, they didn't know how those antigens got there.

To determine the precise mechanism by which dendritic cells transfer antigens to each other, the research team used a new pH-biosensor developed at Carnegie Mellon's Molecular and Biosensor Imaging Center (MBIC). The biosensor is made up of two components: a fluorogen activating peptide (FAP), which is genetically expressed in a cell and tagged to a protein of interest, and a dye called a fluorogen, which either glows red or green depending on the pH level of its environment.

"All routes into the cell have characteristic pH profiles," Bruchez said. "Our pH-biosensor allows us to determine whether the tagged protein — in this case a surrogate antigen — is moving through neutral compartments into the cell, or through acidic compartments into the cell. Those sorts of things determine whether the antigen enters the cell through an active endocytic process, a phagocytic process, or a caveolar uptake process."

In the current study, researchers tagged a surrogate antigen on the surface of a dendritic cell with the FAP. They added the pH sensitive dye, causing the FAP antigen to glow green, an indication of a neutral pH. As the antigen and its bound dye passed to a separate dendritic cell, the antigen/FAP complex glowed red, indicating it used an acidic pathway to enter the new cell. This change in pH from neutral to acidic reveals that antigens are passed between cells through an active endocytic process.

"Once it's nibbled by the acceptor cell, the antigen goes through this endocytic pathway where it can potentially then be reprocessed and re-displayed on the surface of the receptor cell," Bruchez said.

The new biosensor's activity is novel, Bruchez said, because it binds to its target with nanomolar affinity, becomes fluorescently activated, and then is carried into the cell under endocytic conditions, reporting on the pH as it goes. The researchers are hopeful that this technology is the first in a platform of targetable environmental sensors. The current biosensor can read out pH, but this approach could be extended to measure calcium or other ion fluctuations in living cells. According to Bruchez, there are many ways that this basic chemical concept can be extended.

In addition to Bruchez, the authors include Anmol Grover, Brigitte F. Schmidt and Alan S. Waggoner from CMU's Molecular Biosensor and Imaging Center, and Russell D. Salter and Simon C. Watkins from the University of Pittsburgh School of Medicine, which has a longstanding program studying dendritic cell biology and vaccine design.

This research was funded by the National Institutes of Health (NIH). MBIC is one of the NIH's National Technology Centers for Networks and Pathways. For more information, visit: http://www.mbic.cmu.edu/.

About Carnegie Mellon University: Carnegie Mellon (www.cmu.edu) is a private, internationally ranked research university with programs in areas ranging from science, technology and business, to public policy, the humanities and the arts. More than 11,000 students in the university's seven schools and colleges benefit from a small student-to-faculty ratio and an education characterized by its focus on creating and implementing solutions for real problems, interdisciplinary collaboration and innovation. A global university, Carnegie Mellon's main campus in the United States is in Pittsburgh, Pa. It has campuses in California's Silicon Valley and Qatar, and programs in Asia, Australia, Europe and Mexico. The university is in the midst "Inspire Innovation: The Campaign for Carnegie Mellon University," which aims to build its endowment, support faculty, students and innovative research, and enhance the physical campus with equipment and facility improvements.

Jocelyn Duffy | EurekAlert!
Further information:
http://www.cmu.edu
http://www.mbic.cmu.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>