Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon nanotubes boost cancer-fighting cells

21.04.2010
Yale University engineers have found that the defects in carbon nanotubes cause T cell antigens to cluster in the blood and stimulate the body's natural immune response. Their findings, which appear as the cover article of the April 20 issue of the journal Langmuir, could improve current adoptive immunotherapy, a treatment used to boost the body's ability to fight cancer.

Adoptive immunotherapy involves extracting a patient's blood so that the number of naturally occurring T cells (a type of white blood cell) can reproduce more effectively in the laboratory. Although the body produces its own tumor-fighting T cells, they are often suppressed by the tumor and are too few to be effective.

Scientists boost the production of T cells outside the body using different substances that encourage T cell antigens to cluster in high concentrations. The better these substances are at clustering T cell antigens, the greater the immune cell proliferation. Once enough T cells are produced, the blood is transferred back into the patient's body.

The Yale team had previously reported the unexpected effect that carbon nanotubes had on T cell production. They found that the antigens, when presented on the surface of the nanotubes, stimulated T cell response far more effectively than coating other substrates such as polystyrene in the antigens, even though the total amount of antigens used remained the same.

Now they have discovered the reason behind the increased stimulation. They found that the antigens cluster in high concentrations around the tiny defects found in the carbon nanotubes.

"Carbon nanotube bundles resemble a lymph node microenvironment, which has a labyrinth sort of geometry," said Tarek Fahmy, associate professor of chemical engineering and biomedical engineering at Yale and senior author of the paper. "The nanotube bundles seem to mimic the physiology and adsorb more antigens, promoting a greater immunological response."

Current adoptive immunotherapy takes weeks to produce enough T cells, but lab tests showed that the nanotubes produced the same T cell concentration in just one-third the time, Fahmy said.

Carbon nanotubes can cause problems, such as an embolism, when used in the body. But this isn't the case when they are used in blood that has been extracted from the patient, Fahmy said. Next, the team will work on a way to effectively remove the carbon nanotubes from the blood before it is returned to the patient.

"We think this is a really interesting use of carbon nanotubes. It's a way to exploit the unique properties of this material for biological application in a safe way."

Other authors of the paper include lead author Tarek Fadel, Michael Look, Peter Staffier, Gary Haller and Lisa Pfefferle, all of the Yale School of Engineering & Applied Science.

DOI: 10.1021/la902068z

Suzanne Taylor Muzzin | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>