Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon dioxide tamed

17.01.2014
Using a copper catalyst to unite carbon dioxide with organic molecules under mild conditions could make this ubiquitous gas industrially useful

Carbon dioxide has become notorious as a troublesome greenhouse gas produced by burning fossil fuels. Now, this gas could also offer a cheap, abundant and nontoxic source of carbon for the chemical reactions that synthesize products such as plastics and pharmaceuticals.

Only a few industrial processes currently use carbon dioxide as a reagent because it takes a lot of energy to break its strong chemical bonds. For example, to synthesize salicylic acid, a precursor of aspirin, carbon dioxide must be squeezed to 100 times atmospheric pressure and the reaction mixture heated to 125 ºC.

Hung Duong of the A*STAR Institute of Chemical and Engineering Sciences in Singapore and co-workers have shown that a copper catalyst can incorporate carbon dioxide into organic molecules under much milder conditions1. The commercially available catalyst consists of a copper atom joined to a bulky ligand called 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr).

Some reactions involving carbon dioxide require high-energy starting materials that contain reactive metals such as lithium or magnesium. However, these metals often destroy other sensitive chemical groups in the molecule during the reaction. Milder starting materials that contain tin tend to be highly toxic, “so we looked at the use of more environmentally benign organoborons,” says Duong.

The researchers tested a range of molecules that feature a carbon–carbon double bond close to a boron-containing chemical group. They assumed that the copper catalyst works by knocking the boron group off the molecule and briefly taking its place so that it can shepherd carbon dioxide into the right position to bond with the molecule. The products of the reaction contain a carbon–carbon double bond and a carboxylic acid group, arranged in a very predictable pattern. “These are highly versatile building blocks for organic synthesis,” explains Duong.

The reaction generally produced good yields of products when run at just 70 ºC and atmospheric pressure, although it was less successful in those cases where particularly large chemical groups were attached to one end of the starting material.

The reaction also needed relatively large amounts of catalyst – roughly one catalyst molecule for every 10 to 20 molecules of the starting material. “That amount is still too high for industrial use and needs further improvement,” says Duong.

His team now aims to expand the range of reactions that their catalyst can assist. “We are currently looking at exploiting the high reactivity of the copper catalyst toward carbon dioxide to prepare other valuable organic compounds under mild conditions,” he says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences.

Journal information

Duong, H. A., Huleatt, P. B., Tan, Q.-W. & Shuying, E. L. Regioselective copper-catalyzed carboxylation of allylboronates with carbon dioxide. Organic Letters 15, 4034–4037, 2013.

A*STAR Research | Research asia research news
Further information:
http://www.research.a-star.edu.sg
http://www.researchsea.com

More articles from Life Sciences:

nachricht An evolutionary heads-up – The brain size advantage
22.05.2015 | Veterinärmedizinische Universität Wien

nachricht Endocrine disrupting chemicals in baby teethers
21.05.2015 | Goethe-Universität Frankfurt am Main

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>