Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Carbon dioxide tamed

Using a copper catalyst to unite carbon dioxide with organic molecules under mild conditions could make this ubiquitous gas industrially useful

Carbon dioxide has become notorious as a troublesome greenhouse gas produced by burning fossil fuels. Now, this gas could also offer a cheap, abundant and nontoxic source of carbon for the chemical reactions that synthesize products such as plastics and pharmaceuticals.

Only a few industrial processes currently use carbon dioxide as a reagent because it takes a lot of energy to break its strong chemical bonds. For example, to synthesize salicylic acid, a precursor of aspirin, carbon dioxide must be squeezed to 100 times atmospheric pressure and the reaction mixture heated to 125 ºC.

Hung Duong of the A*STAR Institute of Chemical and Engineering Sciences in Singapore and co-workers have shown that a copper catalyst can incorporate carbon dioxide into organic molecules under much milder conditions1. The commercially available catalyst consists of a copper atom joined to a bulky ligand called 1,3-bis-(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr).

Some reactions involving carbon dioxide require high-energy starting materials that contain reactive metals such as lithium or magnesium. However, these metals often destroy other sensitive chemical groups in the molecule during the reaction. Milder starting materials that contain tin tend to be highly toxic, “so we looked at the use of more environmentally benign organoborons,” says Duong.

The researchers tested a range of molecules that feature a carbon–carbon double bond close to a boron-containing chemical group. They assumed that the copper catalyst works by knocking the boron group off the molecule and briefly taking its place so that it can shepherd carbon dioxide into the right position to bond with the molecule. The products of the reaction contain a carbon–carbon double bond and a carboxylic acid group, arranged in a very predictable pattern. “These are highly versatile building blocks for organic synthesis,” explains Duong.

The reaction generally produced good yields of products when run at just 70 ºC and atmospheric pressure, although it was less successful in those cases where particularly large chemical groups were attached to one end of the starting material.

The reaction also needed relatively large amounts of catalyst – roughly one catalyst molecule for every 10 to 20 molecules of the starting material. “That amount is still too high for industrial use and needs further improvement,” says Duong.

His team now aims to expand the range of reactions that their catalyst can assist. “We are currently looking at exploiting the high reactivity of the copper catalyst toward carbon dioxide to prepare other valuable organic compounds under mild conditions,” he says.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Chemical and Engineering Sciences.

Journal information

Duong, H. A., Huleatt, P. B., Tan, Q.-W. & Shuying, E. L. Regioselective copper-catalyzed carboxylation of allylboronates with carbon dioxide. Organic Letters 15, 4034–4037, 2013.

A*STAR Research | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Flipping molecular attachments amps up activity of CO2 catalyst
06.10.2015 | DOE/Brookhaven National Laboratory

nachricht Safe nanomotors propelled by sugar
06.10.2015 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...
All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

Laser-wielding physicists seize control of atoms' behavior

06.10.2015 | Physics and Astronomy

Flipping molecular attachments amps up activity of CO2 catalyst

06.10.2015 | Life Sciences

More VideoLinks >>>