Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Dioxide Recycling?

08.11.2011
“Diagonal” approach for the reductive functionalization of carbon dioxide

Carbon dioxide is a by-product of energy production, but must it always be viewed as a waste product? This gas could be a useful renewable resource and an environmentally friendly chemical reagent.

If we really could use it, it would not just reduce the emission of carbon dioxide into the atmosphere, but also our dependence on petrochemicals, which will eventually start to run out. In the journal Angewandte Chemie French scientists working with Thibault Cantat at the Institut Rayonnement Matière de Saclay in Gif-sur-Yvette have now introduced a new approach for the conversion of carbon dioxide into both useable building blocks for chemical synthesis and new fuels.

“Carbon dioxide is a nontoxic, abundant C1 building block,” says Cantat. “Only a handful of processes using this starting material have been developed, because carbon dioxide is a very stable molecule that can not easily be made to react.” To date, there have been two different approaches for the use of carbon dioxide. According to Cantat, “In the ‘vertical’ approach, the carbon dioxide is reduced, which means that the oxidation state of the carbon atom is reduced by the formal replacement of oxygen with hydrogen. This results in molecules such as methanol or formic acid, which can be converted into fuels.” These products have a higher energy content than carbon dioxide, but only a handful of chemicals can be produced this way.

“In the ‘horizontal’ approach, the carbon atom is functionalized, which means that it forms new bonds to oxygen, nitrogen, or other carbon atoms”, continues Cantat. “The oxidation state stays the same, the energy content is not increased.” This does not produce fuels, but chemicals that are useful building blocks for chemical syntheses, such as urea.

The French team thus tried a compromise approach, a combination of both methods to make a “diagonal” approach. By their method, the carbon dioxide is both reduced and functionalized in one step. This allows the synthesis of a much greater number of chemicals, directly from CO2.

This reaction requires three things: a reducing agent (e.g. a silane), an organic molecule to be attached to the carbon atom of the carbon dioxide (e.g. an amine), and a special catalyst that catalyzes both the reduction and the functionalization. The successful catalyst is a special organic base consisting of a nitrogen-containing ring system. “Variation of the reaction partners should allow us to make a whole series of chemical compounds that are normally obtained from petrochemical feedstocks,” says Cantat, “for example, formamide derivatives, which are important intermediates for both chemical and pharmaceutical industries.”

Author: Thibault Cantat, CEA Saclay, Gif-sur-Yvette (France), http://iramis.cea.fr/Pisp/thibault.cantat/index_fichiers/cantat.html
Title: A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO2

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105516

Thibault Cantat | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie Recycling building block carbon dioxide dioxide

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>