Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Dioxide Recycling?

08.11.2011
“Diagonal” approach for the reductive functionalization of carbon dioxide

Carbon dioxide is a by-product of energy production, but must it always be viewed as a waste product? This gas could be a useful renewable resource and an environmentally friendly chemical reagent.

If we really could use it, it would not just reduce the emission of carbon dioxide into the atmosphere, but also our dependence on petrochemicals, which will eventually start to run out. In the journal Angewandte Chemie French scientists working with Thibault Cantat at the Institut Rayonnement Matière de Saclay in Gif-sur-Yvette have now introduced a new approach for the conversion of carbon dioxide into both useable building blocks for chemical synthesis and new fuels.

“Carbon dioxide is a nontoxic, abundant C1 building block,” says Cantat. “Only a handful of processes using this starting material have been developed, because carbon dioxide is a very stable molecule that can not easily be made to react.” To date, there have been two different approaches for the use of carbon dioxide. According to Cantat, “In the ‘vertical’ approach, the carbon dioxide is reduced, which means that the oxidation state of the carbon atom is reduced by the formal replacement of oxygen with hydrogen. This results in molecules such as methanol or formic acid, which can be converted into fuels.” These products have a higher energy content than carbon dioxide, but only a handful of chemicals can be produced this way.

“In the ‘horizontal’ approach, the carbon atom is functionalized, which means that it forms new bonds to oxygen, nitrogen, or other carbon atoms”, continues Cantat. “The oxidation state stays the same, the energy content is not increased.” This does not produce fuels, but chemicals that are useful building blocks for chemical syntheses, such as urea.

The French team thus tried a compromise approach, a combination of both methods to make a “diagonal” approach. By their method, the carbon dioxide is both reduced and functionalized in one step. This allows the synthesis of a much greater number of chemicals, directly from CO2.

This reaction requires three things: a reducing agent (e.g. a silane), an organic molecule to be attached to the carbon atom of the carbon dioxide (e.g. an amine), and a special catalyst that catalyzes both the reduction and the functionalization. The successful catalyst is a special organic base consisting of a nitrogen-containing ring system. “Variation of the reaction partners should allow us to make a whole series of chemical compounds that are normally obtained from petrochemical feedstocks,” says Cantat, “for example, formamide derivatives, which are important intermediates for both chemical and pharmaceutical industries.”

Author: Thibault Cantat, CEA Saclay, Gif-sur-Yvette (France), http://iramis.cea.fr/Pisp/thibault.cantat/index_fichiers/cantat.html
Title: A Diagonal Approach to Chemical Recycling of Carbon Dioxide: Organocatalytic Transformation for the Reductive Functionalization of CO2

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.201105516

Thibault Cantat | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

Further reports about: Angewandte Chemie Recycling building block carbon dioxide dioxide

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>