Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Captive breeding could transform the saltwater aquarium trade and save coral reefs

21.09.2011
Is 'Coral-Safe' the new 'organic' of the sea?

Marine biologists at The University of Texas at Austin Marine Science Institute are developing means to efficiently breed saltwater aquarium fish, seahorses, plankton and invertebrates in captivity in order to preserve the biologically rich ecosystems of the world's coral reefs.

These scientists believe their efforts, and those of colleagues around the world, could help shift much of the $1 billion marine ornamental industry toward entrepreneurs who are working sustainably to raise fish for the aquarium trade.

"It's the kind of thing that could transform the industry in the way that the idea of 'organic' has changed the way people grow and buy fruits and vegetables," says Joan Holt, professor and associate chair of marine science at The University of Texas at Austin. "We want enthusiasts to be able to stock their saltwater tanks with sustainably-raised, coral-safe species."

Holt is a co-author of a recent article, "Advances in Breeding and Rearing Marine Ornamentals," published in the Journal of the World Aquaculture Society in April.

The paper is a complement to Holt's broad-ranging work over the past 10 years to promote captive breeding of ornamentals. She's been a pioneer in developing food sources and tank designs that enable fragile larvae to survive to adulthood.

Holt has also been a vocal critic of the extraordinarily wasteful methods currently used to bring sea creatures from the oceans to the tanks.

"One popular method is to use a cyanide solution," says Holt. "It's squirted into the holes and crevices of the reef and it anesthetizes the fish. They float to the surface. Then the collectors can just scoop them up, and the ones that wake up are shipped out."

This method, says Holt, has a number of unfortunate effects. It bleaches the coral. It kills or harms other species that make the coral their home, particularly those that can't swim away from the cyanide. It can deplete or distort the native populations of the species. And it contributes to 80 percent of traded animals dying before ever reaching a tank.

Unlike the freshwater ornamental market, which relies mostly on fish raised in captivity, the saltwater ornamental market is 99.9 percent wild caught. Holt says this is largely because there's less accumulated knowledge on breeding saltwater fish in captivity. Saltwater species also tend to spawn smaller, less robust larvae, which are harder to rear to maturity, and to rely on various foods, such as plankton, that are not readily available in mass quantities for breeders.

Yet all these difficulties, says Holt, are surmountable.

She and her colleagues in Port Aransas, where the Marine Science Institute is located, have successfully bred in captivity seven species of fish, seahorses and shrimp they've caught from the Gulf of Mexico and the Caribbean, including species that other biologists had tried but failed to rear before. Others have successfully bred popular species like clownfish, gobies, dottybacks, and dragonets, as well as coral, clams, invertebrates, and algae.

Several big aquariums, including SeaWorld, have committed to assisting in the breeding and egg collection effort, and to integrating into their exhibits information about how the aquarium trade impacts the coral reefs.

Holt and her colleagues envision, ultimately, is a "coral-safe" movement. The science, the economics and the social awareness could together result in a sea change in how saltwater aquariums are populated and how saltwater tank enthusiasts think of themselves and their passion.

As more tank-raised ornamentals percolate into the market, Holt believes people will see another advantage to buying sustainably. The fish will simply do better. They'll live longer, be healthier and be easier to care for.

"Species that are bred in captivity should adapt much better to your tank than something that was just caught halfway across the world, in a different system," says Holt. "Good retailers will want to sell these species, and consumers will benefit from buying them."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>