Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Captive breeding could transform the saltwater aquarium trade and save coral reefs

21.09.2011
Is 'Coral-Safe' the new 'organic' of the sea?

Marine biologists at The University of Texas at Austin Marine Science Institute are developing means to efficiently breed saltwater aquarium fish, seahorses, plankton and invertebrates in captivity in order to preserve the biologically rich ecosystems of the world's coral reefs.

These scientists believe their efforts, and those of colleagues around the world, could help shift much of the $1 billion marine ornamental industry toward entrepreneurs who are working sustainably to raise fish for the aquarium trade.

"It's the kind of thing that could transform the industry in the way that the idea of 'organic' has changed the way people grow and buy fruits and vegetables," says Joan Holt, professor and associate chair of marine science at The University of Texas at Austin. "We want enthusiasts to be able to stock their saltwater tanks with sustainably-raised, coral-safe species."

Holt is a co-author of a recent article, "Advances in Breeding and Rearing Marine Ornamentals," published in the Journal of the World Aquaculture Society in April.

The paper is a complement to Holt's broad-ranging work over the past 10 years to promote captive breeding of ornamentals. She's been a pioneer in developing food sources and tank designs that enable fragile larvae to survive to adulthood.

Holt has also been a vocal critic of the extraordinarily wasteful methods currently used to bring sea creatures from the oceans to the tanks.

"One popular method is to use a cyanide solution," says Holt. "It's squirted into the holes and crevices of the reef and it anesthetizes the fish. They float to the surface. Then the collectors can just scoop them up, and the ones that wake up are shipped out."

This method, says Holt, has a number of unfortunate effects. It bleaches the coral. It kills or harms other species that make the coral their home, particularly those that can't swim away from the cyanide. It can deplete or distort the native populations of the species. And it contributes to 80 percent of traded animals dying before ever reaching a tank.

Unlike the freshwater ornamental market, which relies mostly on fish raised in captivity, the saltwater ornamental market is 99.9 percent wild caught. Holt says this is largely because there's less accumulated knowledge on breeding saltwater fish in captivity. Saltwater species also tend to spawn smaller, less robust larvae, which are harder to rear to maturity, and to rely on various foods, such as plankton, that are not readily available in mass quantities for breeders.

Yet all these difficulties, says Holt, are surmountable.

She and her colleagues in Port Aransas, where the Marine Science Institute is located, have successfully bred in captivity seven species of fish, seahorses and shrimp they've caught from the Gulf of Mexico and the Caribbean, including species that other biologists had tried but failed to rear before. Others have successfully bred popular species like clownfish, gobies, dottybacks, and dragonets, as well as coral, clams, invertebrates, and algae.

Several big aquariums, including SeaWorld, have committed to assisting in the breeding and egg collection effort, and to integrating into their exhibits information about how the aquarium trade impacts the coral reefs.

Holt and her colleagues envision, ultimately, is a "coral-safe" movement. The science, the economics and the social awareness could together result in a sea change in how saltwater aquariums are populated and how saltwater tank enthusiasts think of themselves and their passion.

As more tank-raised ornamentals percolate into the market, Holt believes people will see another advantage to buying sustainably. The fish will simply do better. They'll live longer, be healthier and be easier to care for.

"Species that are bred in captivity should adapt much better to your tank than something that was just caught halfway across the world, in a different system," says Holt. "Good retailers will want to sell these species, and consumers will benefit from buying them."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
20.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Creating a new composite fuel for new-generation fast reactors

20.06.2018 | Materials Sciences

Game-changing finding pushes 3D-printing to the molecular limit

20.06.2018 | Materials Sciences

Could this material enable autonomous vehicles to come to market sooner?

20.06.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>