Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Captive breeding could transform the saltwater aquarium trade and save coral reefs

21.09.2011
Is 'Coral-Safe' the new 'organic' of the sea?

Marine biologists at The University of Texas at Austin Marine Science Institute are developing means to efficiently breed saltwater aquarium fish, seahorses, plankton and invertebrates in captivity in order to preserve the biologically rich ecosystems of the world's coral reefs.

These scientists believe their efforts, and those of colleagues around the world, could help shift much of the $1 billion marine ornamental industry toward entrepreneurs who are working sustainably to raise fish for the aquarium trade.

"It's the kind of thing that could transform the industry in the way that the idea of 'organic' has changed the way people grow and buy fruits and vegetables," says Joan Holt, professor and associate chair of marine science at The University of Texas at Austin. "We want enthusiasts to be able to stock their saltwater tanks with sustainably-raised, coral-safe species."

Holt is a co-author of a recent article, "Advances in Breeding and Rearing Marine Ornamentals," published in the Journal of the World Aquaculture Society in April.

The paper is a complement to Holt's broad-ranging work over the past 10 years to promote captive breeding of ornamentals. She's been a pioneer in developing food sources and tank designs that enable fragile larvae to survive to adulthood.

Holt has also been a vocal critic of the extraordinarily wasteful methods currently used to bring sea creatures from the oceans to the tanks.

"One popular method is to use a cyanide solution," says Holt. "It's squirted into the holes and crevices of the reef and it anesthetizes the fish. They float to the surface. Then the collectors can just scoop them up, and the ones that wake up are shipped out."

This method, says Holt, has a number of unfortunate effects. It bleaches the coral. It kills or harms other species that make the coral their home, particularly those that can't swim away from the cyanide. It can deplete or distort the native populations of the species. And it contributes to 80 percent of traded animals dying before ever reaching a tank.

Unlike the freshwater ornamental market, which relies mostly on fish raised in captivity, the saltwater ornamental market is 99.9 percent wild caught. Holt says this is largely because there's less accumulated knowledge on breeding saltwater fish in captivity. Saltwater species also tend to spawn smaller, less robust larvae, which are harder to rear to maturity, and to rely on various foods, such as plankton, that are not readily available in mass quantities for breeders.

Yet all these difficulties, says Holt, are surmountable.

She and her colleagues in Port Aransas, where the Marine Science Institute is located, have successfully bred in captivity seven species of fish, seahorses and shrimp they've caught from the Gulf of Mexico and the Caribbean, including species that other biologists had tried but failed to rear before. Others have successfully bred popular species like clownfish, gobies, dottybacks, and dragonets, as well as coral, clams, invertebrates, and algae.

Several big aquariums, including SeaWorld, have committed to assisting in the breeding and egg collection effort, and to integrating into their exhibits information about how the aquarium trade impacts the coral reefs.

Holt and her colleagues envision, ultimately, is a "coral-safe" movement. The science, the economics and the social awareness could together result in a sea change in how saltwater aquariums are populated and how saltwater tank enthusiasts think of themselves and their passion.

As more tank-raised ornamentals percolate into the market, Holt believes people will see another advantage to buying sustainably. The fish will simply do better. They'll live longer, be healthier and be easier to care for.

"Species that are bred in captivity should adapt much better to your tank than something that was just caught halfway across the world, in a different system," says Holt. "Good retailers will want to sell these species, and consumers will benefit from buying them."

Daniel Oppenheimer | EurekAlert!
Further information:
http://www.utexas.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
21.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>